Формулы для первой производной

y есть функция y = y(x)
C = постоянная, производная (y') постоянной есть 0

y = C => y' = 0

пример: y = 5, y' = 0

Если y есть функцией типа y = xn, формула для производной есть:

y = xn => y' = nxn-1

пример: y = x3 y' = 3x3-1 = 3x2
y = x-3 y' = -3x-4

Из вышеприведенной формулы мы можем сказать, что для производной y' функции y = x = x1 that:

если y = x тогда y'=1
y = f1(x) + f2(x) + f3(x) ...=>
y' = f'1(x) + f'2(x) + f'3(x) ...

Эта формула представляет производную функции, являющейся суммой функций.
Пример: Если мы имеем две функции f(x) = x2 + x + 1 и g(x) = x5 + 7 и y = f(x) + g(x) тогда y' = f'(x) + g'(x) => y' = (x2 + x + 1)' + (x5 + 7)' = 2x1 + 1 + 0 + 5x4 + 0 = 5x4 + 2x + 1

Если функция есть произведением двух функций, формула производной выглядит так:

y = f(x).g(x) => y' = f'(x)g(x) + f(x)g'(x)

Если f(x) = C(C есть постоянной) и y = f(x)g(x)
y = Cg(x) y'=C'.g(x) + C.g'(x) = 0 + C.g'(x) = C.g'(x)

y = Cf(x) => y' = C.f'(x)

Формулы вычисления производной

y =
f(x)
g(x)
   y' =
f'(x)g(x) - f(x)g'(x)
g2(x)
y = ln x => y' = 1/x
y = ex => y' = ex
y = sin x => y' = cos x
y = cos x => y' = -sin x
y = tg x => y' = 1/cos2x
y = ctg x => y' = -1/sin2x
y = arcsin x  =>  y' =
1
1 - x.x
y = arccos x  =>  y' =
-1
1 - x.x
y = arctg x  =>  y' =
1
1 + x2
y = arcctg x  =>  y' =
-1
1 + x2

если функция есть функцией функции: u = u(x)

y = f(u) => y' = f'(u).u'

Пример. Пусть у нас есть функция y = sin(x2)
в этом случае u = x2, f(u) = sin(u), производные есть f'(u) = cos(u), u' = 2x
y' = (sin(u))'.u' = cos(x2).2x = 2.x.cos(x2)

Задачи с производными

1) f(x) = 10x + 4y. Найдите первую производную f'(x)
ОТВЕТ: Мы можем использовать формулу нахождения производной для суммы функций f(x) = f1(x) + f2(x), f1(x) = 10x, f2(x) = 4y для функции f2(x) = 4y, y есть постоянной, потому что аргумент f2(x) есть x. Поэтому f'2(x) = (4y)' = 0. Отсюда производная функции f(x) есть: f'(x) = 10 + 0 = 10.


     2) Вычислите производную f(x) =
x10
4.15 + cosx

ОТВЕТ: у нас есть две функции h(x) = x10 и g(x) = 4.15 + cos x
функция f(x) есть h(x), разделенная на g(x). h'(x) = 10x9 g'(x) = 0 - sin x = -sin x

f'(x) =
h'(x).g(x) - h(x).g'(x)
(g(x))2
f'(x) =
10x9(4.15 + cos x) - x10(-sin x)
(4.15 + cosx)2
=
x10sin x + 10(60 + cos x)x9
(60 + cosx)2

3) f(x) = ln(sinx). Какая производная функции f(x)?
ОТВЕТ: Чтобы решить эту задачу, мы можем использовать последнюю формулу. Как мы видим, f(x) есть функцией двух функций: f(x) = h(g(x)), где h = ln и g = sin x

f'(x) =
1
g(x)
g'(x) =
1
sin x
cos x =
cos x
sin x

Подробнее о производных на страницах математического форума

Форум о производных


Электронная почта:
Обратная связь  
© 2005 - 2024
Копирование запрещено! В случае копирования администрация сайта обратится в компетентные органы.