Геометрическая пропорция

370. Но если величины находятся в геометрической пропорции, произведение её крайних членов равно произведению их средних членов.
      Если a:b = c:d, ad = bc
      Согласно допущению, (Статьи. 341, 359.) $\frac{a}{b } =\frac{c}{d } $
      Умножив на bd, (Аксиома 3.) $\frac{abd}{b } =\frac{cbd}{d } $
      Упростив дроби, ad = bc.
      Так 12:8 = 15:10, поэтому 12*10 = 8*15.

Соотв: Любой множитель может быть перенесён от одной средней величины к другой, без влияния на пропорцию. Если a:mb = x:y, то a:b = mx:y. При этом произведение средних величин в обоих случаях одинаково. И если na:b = x:y, то a:b = x:ny.

371. С другой стороны, если произведение двух величин равно произведению двух других, то четыре величины сформируют пропорцию, где они сгруппированы таким образом, что одна сторона уравнения будет содержать средние члены, а другая - крайние.
      Если my = nh, то m:n = h:y, то есть$\frac{m}{n } =\frac{h}{y } $
      Таким образом разделив my = nh на ny, мы получим$\frac{my}{ny} =\frac{nh}{ny } $
      Упростив дроби, $\frac{m}{n } =\frac{h}{y } $.

Соотв. То же самое должно быть верно по отношению любых множителей, которые образуют две стороны равенства.
Если (a + b).c = (d - m).y, то a + b:d - m = y:c.

372. Если три величины пропорциональны, то произведение их крайних членов равно квадрату средних. Таким образом одновременно пропорциональны также второй член первой пары и предыдущий член последней. (Статья. 366.) Следовательно они должны быть умножены на себя, то есть возведены в квадрат.
Если a:b = b:c, тогда умножение крайних и средних членов, ac = b2.
Следовательно, среднее пропорциональное двух величин может быть найдено путём извлечения квадратного корня из их произведения.
Если a:x = x:c, то x2 = ac, и x√ac.

373. Из Статьи. 370 следует, что соотношение любого из крайних членов равно произведению средних, разделённых на другой крайний член. И любой из средних членов равен произведению крайних членов, разделённому на другой средний член.
      1. Если a:b = c:d, то ad = bc
      2. Разделим на d, $a=\frac{bc}{d} $
      3. Сначала разделим на c, $b=\frac{ad}{c} $
      4. Разделим это на b, $c=\frac{ad}{b} $
      5. Разделим на a, $d=\frac{bc}{a} $ ; Это значит, что
четвёртый член равен произведению второго и третьего, разделённому на первый.

На этом принципе основаны простые пропорции арифметики, которые часто называют Тройным Правилом. Три числа даны, чтобы найти четвёртое, которое получают путём умножения второго на третье и деления на первое.

374. Утверждение относительно произведений средних и крайних членов предоставляет очень простой и удобный критерий определения того, пропорциональны ли любые четыре величины. Нам только нужно перемножить средние и крайние члены. Если произведения равны, то величины пропорциональны. Если произведения не равны, то величины не пропорциональны.

375. В математических исследованиях, когда даны отношения нескольких величин, то они часто определены в виде пропорции. Но, как правило, необходимо, чтобы эта первая пропорция претерпела ряд трансформаций прежде, чем отчётливо выявится неизвестная величина или утверждение, которое мы хотели доказать. Она может пройти изменения, которые не окажут влияние на равенство отношений или которые обнаружат произведение средних членов равное произведению крайних.

В первую очередь очевидно, что любая перемена в расстановке, которая не окажет влияния на эти равенство этих двух произведений, не уничтожит пропорции. Поэтому, если a:b = c:d, то порядок этих величин может варьироваться, что в любом случае приведёт к ad = bc. Отсюда,

376. Если четыре величины пропорциональны, то порядок средних членов, или крайних членов, или членов обоих пар, может быть инвертирован без разрушения пропорции.
      Если a:b = c:d,
      И 12:8 = 6:4
тогда
1. Инвертируя средние члены,
      a:c = b:d
      12:6 = 8:4
то есть
     Первый относится к третьему
      Как второй к четвёртому.
Другими словами, отношение предыдущих членов равно отношению последующих.

Эта инверсия средних членов часто упоминается в геометрии под названием Альтернация.

2. Инвертируя крайние члены,
      d:b = c:a
      4:8 = 6:12
то есть,
     Четвёртый относится ко второму,
      Как третий к первому.

3. Инвертируя члены каждой пары,
      b:a = d:c
      8:12 = 4:6
то есть,
     Второй относится к первому,
      Как четвёртый к третьему.
Технически это называется Инверсией.
Каждое из этого также может варьироваться, меняя порядок двух пар. (Статья. 365.)

Соотв. Порядок всей пропорции может быть инвертирован.
      Если a:b = c:d, то d:c = b:a.
В каждом из данных случаев будет немедленно видно, что вычисляя произведения средних и крайних членов, у нас получается ad = bc, и 12.4 = 8.6.
Если члены только одной из пар инвертированы, то пропорция становится обратной. (Статья 367.)
Если a:b = c:d, то a относится к b, обратно тому, как d относится к c.

377. Разница в расположении не единственная алтернация, которую производят по отношению к членам пропорции. Часто бывает нужным умножить, разделить, возвести в степень и так далее. Во всех случаях искусство ведения исследования заключается в произведении некоторых изменений, при этом сохраняется постоянное равенство между отношением двух первых и двух последних членов. При решении уравнения, мы должны сохранять равенство сторон, так варьируя пропорцию, чтобы сохранить и равенство соотношений. И это достигается либо путём сохранения соотношений теми же, что и при альтернации членов, либо увеличивая или уменьшая одно из соотношений на столько же, как и другое. Большинство последующих доказательств направлены на чёткое выявление этого принципа и ознакомление с ним. Некоторые из утверждений могут быть доказаны более простым способом, возможно, путём умножения крайних и средних членов. Но это не даст ясного понимания природы некоторых изменений в пропорциях.

Было показано, что если оба члена пары умножены или разделены на одинаковую величину, то их соотношение остаётся одинаковым (Статья. 355.) Так умножая предыдущий член (антецедента) проявится в умноженном соотношении, а деление последующего члена (консеквента) - в делении соотношения. (Статья. 352.) и следующие показывают, что умножение консеквента проявится в делении соотношения, а его деление - в произведении соотношения. (Статья. 353.) Так как соотношения в пропорции равны, то если их перемножить или разделить на одинаковую величину, то они всё ещё будут равны (Аксиома. 3.) Одно будет увеличено или уменьшено, так же как и второе. Отсюда,

378. Если четыре величины пропорциональны, два аналогичных или гомологичных члена могут быть умножены или разделены на одну и ту же величину, без нарушения пропорции.

Если аналогичные члены будут умножены или разделены, то их соотношения не поменяются. (Статья, 355.) Если гомологичные члены будут умножены или разделены, оба соотношения одинаково увеличатся или уменьшатся. (Статьи. 352, 353.)
Если a:b = c:d, то,
1. Умножая первые два члена, ma:mb = c:d
2. Умножая последние два члена, a:b = mc:md
3. Умножая два первых члена (антецедента), ma:b = mc:d
4. Умножая два последних члена (консеквента), a:mb = c:md
5. Разделив два первых члена, $\frac{a}{m}:\frac{b}{m}=c:d$
6. Разделив два последних члена, $a:b=\frac{c}{m}:\frac{d}{m }$
7. Разделив два антецедента, $\frac{a}{m}:b=\frac{c}{m}:d$ a/m:b = c/m:d
8. Разделив два консеквента, $a:\frac{b}{m}=c:\frac{d}{m}$ a:b/m = c:d/m.

Следствие. 1. Все члены могут быть умножены или разделены на одну и ту же величину.
            ma:mb = mc:md, $\frac{a}{m}:\frac{b}{m}=\frac{c}{m}:\frac{d}{m} $.

Следствие. 2. В любом случае, в данной статье умножение консеквентов может быть заменено делением антецедентов той же самой пары, и деление консеквентов - умножением антецедентов. (Статья. 354, след.)

379. Часто бывает необходимо не только изменить члены пропорции и варьировать их расположение, но и сравнить одну пропорцию с другой. Из этого сравнения часто возникает новая пропорция, которая может быть необходима для решения задачи или перехода к доказательству. Один из самых важных случаев, когда сравниваемые два члена одной пропорции такие же как два в другой. Похожие члены могут исчезнуть, и новая пропорция может быть сформирована из оставшихся четырёх членов. Так,

380. Если два соотношения соответсвтенно равны третьему, то они также равны между собой.
Это не что иное, как 11ая аксиома, применяемая к соотношениям.
1. Если a:b = m:n
И c:d = m:n
тогда a:b = c:d,или a:c = b:d. (Статья.376.)
2. Если a:b = m:n
И m:n = c:d
то a:b = c:d,или a:c = b:d.

След. Если a:b = m:n
m:n > c:d
то a:b > c:d.
Так если соотношение m:n больше, чем c:d, то это показывает, что соотношение a:b, которое равно соотношению m:n, также больше чем соотношение c:d.

381. В этих примерах схожие члены двух пропорций это два первых и два последних. И порядок не важен. Порядок членов может быть изменён разными способами без влияния на равенство соотношений.

1. Похожими членами могут быть два антецедента, или два косеквента в каждой пропорции. Таким образом,
Если m:a = n:b
И m:c = n:d
тогда
Чередуем, m:n = a:b
И m:n = c:d
Отсюда a:b = c:d, или a:c = b:d, согласно последнему параграфу.

2. Антецеденты в одной пропорции, могут быть такими же как консеквенты в другой.
Если m:a = n:b
И c:m = d:n
Инветрируя и чередуя a:b = m:n
Чередуя c:d = m:n:
Поэтому a:b, и так далее как ранее.

3. Два гомологичных члена в одной из пропорций могут быть такими же, как два аналогичные члены в другой.
Если a:m = b:n
и c:d = m:n
Чередуя, a:b = m:n
И c:d = m:n
Поэтому, a:b, и так далее.

Всё это примеры равенства между соотношениями в одной пропорции с соотношениями в другой. В геометрии на предположение, к которому они принадлежат обычно ссылаются как на "ex aequo"или "ex aequali" (по справедливости). Второй случай в этой статье более всего отвечает объяснению Евклида. Но оба они все согласуются с одним и тем же принципом и часто к ним обращаются без разграничений.

382. Любое число пропорций может быть сравнено аналогичным способом, если два первых или два последних члена в каждой предыдущей пропорции такие же, как два первые и два последние члена в последующей.
      Поэтому если a:b = c:d
      И c:d = h:l
      И h:l = m:n
      И m:n = x:y
            то a:b = x:y.
То есть два первых члена первой пропорции имеют такое же соотношение, как два последних члена последней пропорции. Это показывает, что соотношение всех пар одинаково.

И если члены не находятся в том же порядке как здесь, но могут быть упрощены к данному виду, применяется тот же самый принцип.
      поэтому если a:c = b:d
      И c:h = d:l
      И h:m = l:n
      И m:x = n:y
            тогда чередуя
      a:b = c:d
      c:d = h:l
      h:l = m:n
      m:n = x:y.
      Поэтому a:b = x:y, как и ранее.

Во всех примерах в этой и предшествующих статьях, два члена в одной пропорции, у которых есть равные члены в другой, не являются ни двумя средними членами, ни двумя крайними членами, а одним средним и одним крайним членом, из чего следует, что пропорция однородна и непрерывна.

383. Но если два средних или два крайних члена в одной пропорции такие же, как средние и крайние члены в другой, то оставшиеся четыре члена будут взаимно пропорциональны.
Если a:m = n:b
И c:m = n:d
тогда a:c = $\frac{1}{b}:\frac{1}{d} $, или a:c = d:b

Для ab = mn
И cd = mn
(Статья. 370) Поэтому ab = cd, и a:c = d:b.

В данном примере два средних члена в одной пропорции, такие же как те же в другой. Но принцип будет тем же, если крайние члены не равны или если крайние члены одной пропорции не равны средним членам другой.
      Если m:a = b:n
      И m:c = d:n
      тогда a:c = d:b.

      Или if a:m = n:b
      И m:c = d:n
      тогда a:c = d:b.
Теорема в геометрии, которая применима в данном случае обычно именуется словами "ex aequo perturbate" (по правде запутанная).

384. Другой способ варьировать члены в пропорции это сложение или вычитание.

Если к или от двух гомологичных членов пропорци вычитаются или прибавляются две другие величины, которые находятся в том же соотношении, то пропорция остаётся верной.

Соотношение не меняется, если добавить или отнять от него другое равное соотношение. (Статья. 357.)
            Если a:b = c:d
            И a:b = m:n
Тогда добавляя или отнимая от a и b, члены с равным соотношением m:n, мы получим
      a+m:b+n = c:d,      и a-m:b-n = c:d.
И добавляя или отнимая m и n к или от c и d, мы получим,
      a:b = c+m:d+n,      и a:b = c-m:d-n.

Здесь сложение и вычитание производится к и от аналогичных членов. Но путём чередования (Статья. 376,) эти члены будут гомологичными, и мы получим,
      a+m:c = b+n:d,      и a-m:c = b-n:d.

След. 1. Это добавление может распространяться на любое число равных соотношений.
Таким образом, если
      a:b = c:d
      a:b = h:l
      a:b = m:n
      a:b = x:y
Тогда a:b = c+h+m+x:d+l+n+y.

След. 2. Если a:b = c:d
      И m:b = n:d
тогда a+m:b = c+n:d.

Чередуем a:c = b:d
И m:n = b:d
таким образом
      a+m:c+n = b:d
      или a+m:b = c+n:d.

385. Из последней статьи следует, что если в любой пропорции члены прибавляются или отнимаются друг от друга, то,

Если аналогичные и гомологичные члены добавляются или отнимаются от двух других, то пропорция сохраняется верной.
      Таким образом, если a:b = c:d, и 12:4 = 6:2, тогда,

1. Добавляя два последних члена к двум первым.
      a+c:b+d = a:b      12+6:4+2 = 12:4
    и a+c:b+d = c:d      12+6:4+2 = 6:2
      или a+c:a = b+d:b      12+6:12 = 4+2:4
    и a+c:c = b+d:d      12+6:6 = 4+2:2.

2. Складывая два антецедента с двумя консеквентами.
      a+b:b = c+d:d      12+4:4 = 6+2:2
      a+b:a = c+d:c, т.д..      12+4:12 = 6+2:6, т.д..
           Это называется Композицией.

3. Отнимая два первых члена от двух последних.
            c-a:a = d-b:b
            c-a:c = d-b:d, т.д..

4. Отнимая два последних члена от двух первых.
            a-c:b-d = a:b
            a-c:b-d = c:d, т.д..

5. Отнимая консеквенты от антецедентов.
            a-b:b = c-d:d
            a:a-b = c:c-d, etc.
Преобразование, показанное в последней форме называется Конверсией.

6. Отнимая антецеденты от консеквентов.
            b-a:a = d-c:c
            b:b-a = d:d-c, etc.

7. Добывляя и вычитая,
              a+b:a-b = c+d:c-d.
То есть сумма первых двух членов относится к их разности, как сумма двух последних к их разности.

След. Если любые сложные величины, расставленые как в предыдущих примерах, пропорциональны, то простые величины, из которых они состоят также пропорциональны.
            Таким образом, если a+b:b = c+d:d, то a:b = c:d.
      Это называется Делением.

386. Если соответствующие члены двух или более разрядов пропорциональных величин перемножить между собой, то произведение также будет пропорционально.

Это смешанные соотношения (Статья. 347,) или смешанные пропорции. Это нужно уметь отличать от того, что называется композицией, которая является сложением членов соотношения. (Статья 385. 2.)
      Если a:b = c:d         12:4 = 6:2
      И h:l = m:n         10:5 = 8:4
Тогда ah:bl = cm:dn         120:20 = 48:8.
      Исходя из определения пропорции два соотношения первого разряда равны, как и соотношения второго разряда. И умножение соответствующих членов является умножением соотношений, (Статья. 352. соотв.), то есть умножением равных на равные (Аксиома. 3.), так что соотношения будут всё так же равными, и поэтому все четыре произведения должны быть пропорциональны.

Такое же доказательство применимо к любому числу пропорций.
            Если
              a:b = c:d
              h:l = m:n
              p:q = x:y
            Тогда ahp:blq = cmx:dny.
Из этого следует, что если члены пропорции перемножить на самих себя, то есть, если они возведены в какую-либо степень, то они всё равно будут пропорциональны.
      Если a:b = c:d         2:4 = 6:12
       a:b = c:d         2:4 = 6:12
Тогда a2:b2 = c2:d2         4:16 = 36:144
Пропорциональные величины также получаются реверсируя этот процесс, то есть вычисляя корни членов пропорции.
      Если a : b:: c : d,      тогда √a:√b = √c:√d.
Перемножив средние и крайние члены, ad = bc
И извлекя корень из обеих сторон, √ad = √bc
То есть, (Статья. 254, 371,) √a:√b = √c:√d.
Отсюда,

387. Если некоторые величины пропорциональны, то продукты их возведения в степень или извлечения корней пропорциональны.
              Если a:b = c:d
Тогда an:bn = cn:dn,      и ma:mb = mc:md.
И man:mbn = mcn:√dn, то есть, am/n:bm/n = cm/n:dm/n.

388. Если члены одного разряда пропорций разделить на соответствующие члены другого разряда, то частные будут пропорциональны.
Это иногда называют решением соотношений.
      Если a:b = c:d      12:6 = 18:9
      И h:l = m:n      6:2 = 9:3
      Тогда $\frac{a}{h}:\frac{b}{l }=\frac{c}{m}:\frac{d}{n} $      $\frac{a}{h}:\frac{b}{l }=\frac{c}{m}:\frac{d}{n} $.
Это просто реверсия процесса в Статье. 386, и может быть доказана похожим образом.
Это нужно уметь различать от того, что в геометрии называется разделением, которое является вычитанием членов соотношения. (Статья. 385. соотв.)

389. В сложных смешанных пропорциях, равные множители или делители двух аналогичных или гомологичных членов могут быть отвергнуты.
Если
      a:b = c:d         12:4 = 9:3<
      b:h = d:l         4:8 = 3:6
      h:m = l:n         8:4 = 6:15
Тогда a:m = c:n          12:20 = 9:15.
Это правило может быть применено к случаям, к которым относятся термины "ex aequo" и "ex aequo perturbate". Смотрите Статьи. 381 и 383. Один из методов может служить для того, чтобы подтвердить другой.

394. Изменения, которые могут быть сделаны в пропорциях без нарушения равенства соотношений, так многочислены, что они стали бы обременительны к запоминанию, если бы их нельзя было бы упростить до нескольких общих принципов. Они обычно получаются,
1. Инвертируя порядок членов, Статья. 376.
2. Умножая или деля на одинаковую величину, Статья. 378.
3. Сравнивая пропорции, в которых есть схожие члены. Статьи. 380, 381, 382, 383.
4. Складывая или отнимая члены одинаковых соотношений, Статьи. 384, 385.
5. Умножая или деля одну пропорцию на другую, Статьи. 386, 387, 388.
6. Возводя в степень или извлекая корни членов, Статья. 387.

391. Когда четыре величины пропорциональны, если первая больше чем вторая, то третья будет больше чем четвёртая; если равны, то равны, а если меньше, то, соответственно, меньше.

Для одинаковых соотношений двух пар, если одно является соотношением равенства, то и второе тоже, и поэтому антецедент в каждой паре равен её консеквенту. (Статья. 345,) Если одно соотношение большего неравенства, то и второе тоже, и поэтому антецедент каждого из них больше чем соответствующий консеквент. А если одно соотношение меньшего неравенства, то и второе так же, и поэтому антецедент каждого из них меньше чем консеквент.
Пусть a:b = c:d; тогда если
            a = b, c = d
            a > b, c > d
            a < b, c < d.

След. 1. Если первый член больше третьего, то тогда второй больше четвёртого, если равен - то равен, если меньше - то, соответсвенно, меньше.
В случае чередования, a:b = c:d становится a:c = b:d, без какого-либо чередования величин. Таким образом, если a = b, c = d, и т.д., как и ранее.

След. 2. Если a:m = c:n
и m:b = n:d
тогда if a = b, c = d, и т.д.
Для равенства соотношений, (Статья. 381. 2.) или смешанных соотношений, (Статьи. 386, 389.)
a:b = c:d. Таким образом, если a = b, c = d, и т.д. как ранее.

След. 3. Если a:m = n:d
и m:b = c:n
тогда if a = b, c = d.

391. b. Если четыре величины пропорциональны, то обратные им величины тоже пропорциональны и наоборот.
      Если a:b = c:d, тогда $\frac{a}{h}:\frac{b}{l }=\frac{c}{m}:\frac{d}{n} $.
Для каждой из этих пропорций, при сокращении получаем ad = bc.


Электронная почта:

© 2005 - 2020
Копирование запрещено! В случае копирования администрация сайта обратится в компетентные органы.