Операции с векторами

Рассмотрим вектор v с начальной точкой в начале координат в любой координатной системе x-y и с конечной точкой в (a,b). Мы говорим, что вектор находится в стандартном положении и ссылаемся на него как на радиус-вектор. Обратите внимание, что пара точек определяет этот вектор. Таким образом, мы можем использовать это для обозначения вектора. Чтобы подчеркнуть, что мы имеем в виду вектор, и, чтобы избежать путаницы, как правило, пишут:
v = < a, b >.


Координата a есть скаляром горизонтальной компоненты вектора, и координата b есть скаляром вертикальной компоненты вектора. Под скаляром мы подразумеваем численное количество, а не векторную величину. Таким образом, это рассматривается как компонентная форма v. Обратите внимание, что a и b НЕ вектора и их не надо путать с определением компонента вектора.

Теперь рассмотрим с A = (x1, y1) и C = (x2, y2). Давайте рассмотрим, как найти радиус вектор, эквивалентный . Как Вы видите на рисунке внизу, начальная точка A перемещена в начало координат (0, 0). Координаты P находятся вычитанием координат A из координат C. Таким образом, P = (x2 - x1, y2 - y1) и радиус вектор есть .

Можно показать, что и имеют одну и ту же величину и направление, и поэтому эквивалентны. Таким образом, = = < x2 - x1, y2 - y1 >.

Компонентная форма с A = (x1, y1) и C = (x2, y2) есть
= < x2 - x1, y2 - y1 >.

Пример 1 Найдите компонентную форму если C = (- 4, - 3) и F = (1, 5).

Решение Мы имеем
= < 1 - (- 4), 5 - (- 3) > = < 5, 8 >.

Обратите внимание, что вектор есть равным радиус-вектору , как показано на рисунке вверху.

Теперь, когда мы знаем, как записать вектор в компонентной форме, давайте изложим некоторые определения.
Длину вектора v легко определить, когда известны компоненты вектора. Для v = < v1, v2 >, мы имеем
|v|2 = v21 + v22          Используя теорему Пифагора
|v| = √v21 + v22.

Длина, или величина ветктора v = < v1, v2 > находится как |v| = √v21 + v22.

Два вектора равны или эквивалентны, если они имеют одну и ту же величину и одно и то же направление.

Пусть u = < u1, u2 > и v = < v1, v2 >. Tогда
< u1, u2 > = < v1, v2 >          только если u1 = v1 and u2 = v2.

Операции с векторами

Чтобы умножить вектор V на положительное число, мы умножаем его длину на это число. Его направление остается прежним. Когда вектор V умножается на 2, например, его длина увеличивается в два раза, но его направление не изменяется. Когда вектор умножается на 1,6, его длина увеличивается на 60%, а направление остается прежним. Чтобы умножить вектор V на отрицательное действительное число, умножаем его длину на это число и изменяем направление на противоположное. Например, Когда вектор умножается на (-2), его длина увеличивается в два раза и его направление изменяется на противоположное. Так как действительные числа работают как скалярные множители в умножении векторов, мы называем их скаляры и произведение kv называется скалярные кратные v.

Для действительного числа k и вектора v = < v1, v2 >, скалярное произведение k и v есть
kv = k.< v1, v2 > = < kv1, kv2 >.
Вектор kv есть скалярным кратным вектора v.

Пример 2 Пусть u = < - 5, 4 > и w = < 1, - 1 >. Найдите - 7w, 3u и - 1w.

Решение
- 7w = - 7.< 1, - 1 > = < - 7, 7 >,
3u = 3.< - 5, 4 > = < -15, 12 >,
- 1w = - 1.< 1, - 1 > = < - 1, 1 >.

Теперь мы можем сложить два вектора, используя компоненты. Чтобы сложить два вектора в компонентной форме, мы складываем соответствующие компоненты. Пусть u = < u1, u2 > и v = < v1, v2 >. Тогда
u + v = < u = < u1 + v1, u2 + v2 >

Например, если v = < - 3, 2 > и w = < 5, - 9 >, тогда
v + w = < - 3 + 5, 2 + (- 9) > = < 2, - 7 >

Если u = < u1, u2 > и v = < v1, v2 >, тогда
u + v = < u1 + v1, u2 + v2 >.

Перед тем, как мы определим вычитание векторов нам нужно дать определение - v. Противоположный вектору v = < v1, v2 >, изображенному внизу, есть
- v = (- 1).v = (- 1)< v1, v2 > = < - v1, - v2 >

Вычитание векторов, такое как u - v вовлекает вычитание соответствующих компонент. Мы покажем это представлением u - v как u + (- v). Если u = < u1, u2 > и v = < v1, v2 >, тогда
u - v = u + (- v) = < u1, u2 > + < - v1, - v2 > = < u1 + (- v1), u2 + (- v2) > = < u1 - v1, u2 - v2 >

Мы можем проиллюстрировать вычитание векторов с помощью параллелограмма , как мы это делали для сложения векторов.

Вычитание векторов

Если u = < u1, u2 > и v = < v1, v2 >, тогда
u - v = < u1 - v1, u2 - v2 >.

Интересно сравнить суммы двух векторов с разницей тех же двух векторов в одном параллелограмме. Векторы u + v и u - v есть диагоналями параллелограмма.

Пример 3 Сделайте следующие вычисления, где u = < 7, 2 > и v = < - 3, 5 >.
a) u + v
b) u - 6v
c)3u + 4v
d)|5v - 2u|

Решение
a) u + v = < 7, 2 > + < - 3, 5 > = < 7 + (- 3), 2 + 5 > = < 4, 7 >;
b)u - 6v = < 7, 2 > - 6.< - 3, 5 > = < 7, 2 > - < - 18, 30 > = < 25, - 28 >;
c) 3u + 4v = 3.< 7, 2> + 4.< - 3, 5 > = < 21, 6 > + < - 12, 20 > = < 9, 26 >;
d) |5v - 2u| = |5.< - 3, 5 > - 2.< 7, 2 >| = |< - 15, 25 > - < 14, 4 >| = |< - 29, 21 >| = √(- 29)2 + 212 = √1282 ≈ 35,8

Прежде чем сформулировать свойства векторного сложения и умножения, мы должны дать определение еще одному специальному вектору - нулевому вектору. Вектор, чья начальная точка совпадает с конечной точкой, называется нулевым вектором, обозначается O, или < 0, 0 > . Его величина равна 0. В сложении векторов:
v + O = v.          < v1, v2 > + < 0, 0 > = < v1, v2 >
Операции над векторами обладают те же самыми свойствами, что и операции над вещественными числами.

Свойства векторного сложения и умножения

Для всех векторов u, v, и w, и для всех скаляров b и c:
1. u + v = v + u.
2. u + (v + w) = (u + v) + w.
3. v + O = v.
4 1.v = v;          0.v = O.
5. v + (- v) = O.
6. b(cv) = (bc)v.
7. (b + c)v = bv + cv.
8. b(u + v) = bu + bv.

Орты

Вектор величиной, или длиной 1 называется орт. Вектор v = < - 3/5, 4/5 > есть орт, потому что
|v| = |< - 3/5, 4/5 >| = √(- 3/5)2 + (4/5)2 = √9/25 + 16/25 = √25/25 = √1 = 1.

Пример 4 Найдите орт, который имеет то же самое направление, что и вектор w = < - 3, 5 >.

Решение Найдем сначала длину w:
|w| = √(- 3)2 + 52 = √34. Таким образом, мы ищем вектор, с длиной 1/√34 от w и с таким же самым направлением, что и вектор w. Этот вектор есть
u = w/√34 = < - 3, 5 >/√34 = < - 3/√34, 5/√34 >.
Вектор u есть орт, потому что
|u| = |w/√34| = = √34/34 = √1 = 1.

Если v есть вектор и v ≠ O, тогда
(1/|v|)• v,          or          v/|v|,
есть орт в направлении v.

Хотя орты могут иметь любое направление, орты, параллельные осям x и y особенно полезны. Они определяются как
i = < 1, 0 >          and          j = < 0, 1 >.

Любой вектор может быть выражен как линейная комбинация орта i и j. Например, пусть v = < v1, v2 >. Tогда
v = < v1, v2 > = < v1, 0 > + < 0, v2 > = v1< 1, 0 > + v2 < 0, 1 > = v1i + v2j.

Пример 5 Выразите вектор r = < 2, - 6 > как линейную комбинацию i и j.

Решение
r = < 2, - 6 > = 2i + (- 6)j = 2i - 6j.

Пример 6 Запишите вектор q = - i + 7j в компонентной форме.

Решениеq = - i + 7j = -1i + 7j = < - 1, 7 >

Векторные операции могут быть также выполнены, когда векторы записаны как линейные i и j.

Пример 7 Если a = 5i - 2j и b = -i + 8j, найдите 3a - b.

Решение
3a - b = 3(5i - 2j) - (- i + 8j) = 15i - 6j + i - 8j = 16i - 14j.

Углы обзора

Конечная точка P орты в стандартной позиции есть точкой на единичной окружности, определенной (cosθ, sinθ). Таким образом, орт может быть выражен в компонентной форме,
u = < cosθ, sinθ >,
или как линейная комбинация орт i и j,
u = (cosθ)i + (sinθ)j,
где компоненты u есть функциями угла обзора θ измеряемого против часовой стрелки от оси x к этому вектору. Так как θ изменяется от 0 до 2π, точка P отслеживает круг x2 + y2 = 1. Это охватывает все возможные направления ортов и тогда уравнение u = (cosθ)i + (sinθ)j описывает каждый возможный орт на плоскости.

Пример 8 Вычислите и сделайте эскиз орта u = (cosθ)i + (sinθ)j для θ = 2π/3. Изобразите единичную окружность на эскизе.

Решение
u = (cos(2π/3))i + (sin(2π/3))j = (- 1/2)i + (√3/2)j

Пусть v = < v1, v2 > с углом обзора θ. Используя определение функции тангенса, мы можем определить угол обзора их компонент v:

Пример 9 Определите угол обзора θ вектора w = - 4i - 3j.

Решение Мы знаем, что
w = - 4i - 3j = < - 4, - 3 >.
Таким образом, имеем
tanθ = (- 3)/(- 4) = 3/4          и θ = tan- 1(3/4).
Так как w находится в третьем квадранте, мы знаем, что θ есть углом третьего квадранта. Соответствующий угол есть
tan- 1(3/4) ≈ 37°,          и          θ ≈ 180° + 37°, или 217°.

Это удобно для работы с прикладными задачами, а в последующих курсах, чтобы иметь способ выразить вектор так, чтобы его величина и направление могли быть легко определены или прочитаны. Пусть v это вектор. Тогда v/|v| есть орт в том же самом направлении, что и v. Таким образом, мы имеем
v/|v| = (cosθ)i + (sinθ)j
v = |v|[(cosθ)i + (sinθ)j]              Умножая на |v|
v = |v|(cosθ)i + |v|(sinθ)j.

Углы между векторами

Когда вектор умножается на скаляр, результатом есть вектор. Когда складываются два вектора, результатом также есть вектор. Таким образом, мы могли бы ожидать, что произведение двух векторов есть вектор, но это не так. Скалярное произведение двух векторов есть действительное число или скаляр. Этот результат полезен в нахождении угла между двумя векторами и в определении, являются ли два вектора перпендикулярными.

Скалярное произведение двух векторов u = < u1, u2 > и v = < v1, v2 > is
u • v = u1.v1 + u2.v2
(Обратите внимание, что u1v1 + u2v2 есть скаляром, а не вектором.)

Пример 10Найдите скалярное произведение, когда
u = < 2, - 5 >, v = < 0, 4 > и w = < - 3, 1 >.
a)u • w
b)w • v

Решение
a) u • w = 2(- 3) + (- 5)1 = - 6 - 5 = - 11;
b) w • v = (- 3)0 + 1(4) = 0 + 4 = 4.

Скалярное произведение может быть использовано для нахождения угла между двумя векторами. Угол между двумя векторами это самый маленький положительный угол, образованный двумя направленными отрезками. Таким образом, θ между u и v это тот же самый угол, что и между v и u, и 0 ≤ θ ≤ π.

Если θ есть углом между двумя ненулевыми векторами u и v, тогда
cosθ = (u • v)/|u||v|.

Пример 11Найдите угол между u = < 3, 7 > и v = < - 4, 2 >.

Решение Начнем с нахождения u • v, |u|, и |v|:
u • v = 3(- 4) + 7(2) = 2,
|u| = √32 + 72 = √58, and
|v| = √(- 4)2 + 22 = √20.
Tогда
cosα = (u • v)/|u||v| = 2/√58.√20
α = cos- 1(2/√58.√20)
α ≈ 86,6°.

Равновесие сил

Когда несколько сил действуют на одну и ту же точку на объекте, их векторная сумма должна быть равна нуля, для того, чтобы был баланс. Когда есть баланс сил, то объект является стационарным или движется по прямой линии, без ускорения. Тот факт, что векторная сумма должна быть равна нулю вывода для получения баланса, и наоборот, позволяет решать нам многие прикладные задачи с участием сил.

Пример 12 Подвесной блок 350- фунтовый блок подвешен с помощью двух кабелей. осталось. В точке А есть три силы, действующие так: W блок тянет вниз, а R и S (два кабеля) тянут вверх и наружу. Найдите нагрузку каждого кабеля.

Решение Нарисуем диаграмму с начальными точками каждого вектора в начале кооординат. Для баланса, сумма векторов должна быть равна О:

R + S + W = О.
Мы можем выразить каждый вектор через его величину и угол обзора :
R = |R|[(cos125°)i + (sin125°)j],
S = |S|[(cos37°)i + (sin37°)j], и
W = |W|[(cos270°)i + (sin270°)j]
= 350(cos270°)i + 350(sin270°)j
= -350j          cos270° = 0; sin270° = - 1.
Заменяя R, S, и W in R + S + W + O, мы имеем
[|R|(cos125°) + |S|(cos37°)]i + [|R|(sin125°) + |S|(sin37°) - 350]j = 0i + 0j.
Это дает нам систему уравнений:
|R|(cos125°) + |S|(cos37°) = 0,
|R|(sin125°) + |S|(sin37°) - 350 = 0.
Решая эту систему, мы получаем
|R| ≈ 280 и |S| ≈ 201.
Таким образом, нагрузка на кабели 280 фунтов и 201 фунт.


Электронная почта:

© 2005 - 2021
Копирование запрещено! В случае копирования администрация сайта обратится в компетентные органы.