Бета-функция
Определение бета-функцииB(m, n)
$B(m,n)=\int\limits_0^1 t^{m-1}(1-t)^{n-1} dt$ m > 0, n > 0
Отношение бета-функции к гамма-функции
$ B(m,n)=\frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$
Расширения Β(m, n) для m < 0, n < 0 обеспечивается, используя Γ(n) = Γ(n + 1)/n.
Некоторые важные результаты
Β(m ,n) = Β(n, m)
$B(m,n)=2\int\limits_0^{\frac{\pi}{2}}\sin^{2m-1}\theta\cos^{2n-1}\theta d\theta$
$B(m,n)=\int\limits_0^\infty \frac{t^{m-1}}{(1+t)^{m+n}} dt$
$B(m,n)=r^n(r+1)^m \int\limits_0^1 \frac{t^{m-1}(1-t)^{n-1}}{(r+t)^{m+n}} dt$