Уравнение окружности
Уравнение окружности радиуса $R$, с центром в $(x_0,y_0)$
Уравнение окружности радиуса R , проходящей через центр координат
где $(\theta; \alpha)$ полярные координаты любой точки на окружности и $(R; \alpha)$ полярные координаты центра окружности.
Коническая кривая (эллипс, парабола или гипербола)
Если точка $P$ движется так, что расстояние от фиксированной точки [называемой фокусом] разделенное этим расстоянием от фиксированной линии [называемой директриссой] есть постоянной e [называется эксцентриситет], тогда кривая, описываемая P называется конической[она называется так потому, что такие кривые могут быть получены в результате пересечения плоскости и конуса под различными углами].
Если фокус выбран в начале координат $O$ уравнение конической кривой в полярных координатах $(r; \theta)$ есть, если $OQ = p$ и $LM = D$,
$r=\frac{p}{1-\epsilon\cos\theta}=\frac{\epsilon D}{1-\epsilon\cos\theta}$
Коническая кривая есть
(i) эллипсом если $\epsilon< 1$
(ii) параболой если $\epsilon=1$
(iii) гиперболой если $\epsilon> 1$.