Determinante de una matriz

Por Catalin David

Definición

El determinante de una matriz cuadrada A es el número entero (escalar) obtenido a través de una variedad de métodos que utilizan los elementos de la matriz.

Notación

Sea $ A = \begin{pmatrix} 1 & 4 & 2 \\ 5 & 3 & 7 \\ 6 & 2 & 1 \end{pmatrix}$

$det(A) = \left|A\right| = \begin{vmatrix} 1 & 4 & 2 \\ 5 & 3 & 7 \\ 6 & 2 & 1 \end{vmatrix}$

Propiedades de determinantes

  1. Si una matriz tiene una fila o una columna con todos los elementos iguales a 0 entonces su determinante es 0.

    Ejemplo 12
    $\begin{vmatrix} 1 & 4 & 2\\ 0 & 0 & 0\\ 3 & 9 & 5 \end{vmatrix}= 0$ or $\begin{vmatrix} 1 & 4 & 0\\ 4 & 2 & 0\\ 3 & 9 & 0 \end{vmatrix}=0$
  2. Si una matriz tiene dos filas iguales o dos columnas iguales entonces su determinante es 0.

    Ejemplo 13
    $\begin{vmatrix} 1 & 4 & 2\\ 1 & 4 & 2\\ 3 & 9 & 5 \end{vmatrix}= 0$ or $\begin{vmatrix} 1 & 4 & 1\\ 4 & 2 & 4\\ 3 & 9 & 3 \end{vmatrix}=0$
  3. Si una matriz tiene dos filas proporcionales o dos columnas proporcionales entonces su determinante es 0.

    Ejemplo 14
    $\begin{vmatrix} 1 & 4 & 2\\ 2 & 8 & 4\\ 3 & 9 & 5 \end{vmatrix}= 0$ (las dos primeras lineas son proporcionales)
    o
    $\begin{vmatrix} 8 & 4 & 7\\ 4 & 2 & 3\\ 18 & 9 & 8 \end{vmatrix}=0$ (las dos primeras columnas son proporcionales)
  4. Si una fila o una columna es la suma o la diferencia de otras filas, respectivamente entonces el determinante es 0.

    Ejemplo 15
    $\begin{vmatrix} 1 & 4 & 2\\ 7 & 2 & 3\\ 8 & 6 & 5 \end{vmatrix}= 0$     $R_{1} +R_{2} =R_{3}$ or

    $ \begin{vmatrix} 9 & 12 & 3\\ 1 & 8 & 7\\ 5 & 7 & 2 \end{vmatrix}=0$     $C_{1}+C_{3}=C_{2}$
  5. En una determinante, podemos factorizar individualmente enteros de líneas y columnas.

    Ejemplo 16
    En el determinante $\begin{vmatrix} 3 & 9 & 12\\ 5 & 1 & 8 \\ 7 & 4 & 2 \end{vmatrix}$, factorizamos 3 de la fila 1 $(R_{1})$ y obtenemos:
    $3 \cdot \begin{vmatrix} 1 & 3 & 4\\ 5 & 1 & 8\\ 7 & 4 & 2 \end{vmatrix}$, entonces factorizamos 2 de la columna 3 $(C_{3})$:
    $6\cdot \begin{vmatrix} 1 & 3 & 2\\ 5 & 1 & 4\\ 7 & 4 & 1 \end{vmatrix}$
  6. En una determinante podemos sumar o restar filas o columnas a otras filas, respectivamente, y el valor del determinante sigue siendo el mismo.

    Ejemplo 17
    $\begin{vmatrix} 1 & 5\\ 3 & 8 \end{vmatrix}$ $\xlongequal{R_{1}+R_{2}} \begin{vmatrix} 4 & 13\\ 3 & 8 \end{vmatrix}$
    Ejemplo 18
    $\begin{vmatrix} 1 & 5\\ 3 & 8 \end{vmatrix}$ $\xlongequal{C_{1}+C_{2}} \begin{vmatrix} 6 & 5\\ 11 & 8 \end{vmatrix}$
  7. En una determinante podemos sumar o restar múltiplos de filas o columnas.

    Ejemplo 19
    $\begin{vmatrix} 1 & 5\\ 3 & 8 \end{vmatrix}$ $\xlongequal{2R_{1}+3R_{2}} \begin{vmatrix} 11 & 34\\ 3 & 8 \end{vmatrix}$

    Ejemplo 20
    $\begin{vmatrix} 1 & 5\\ 3 & 8 \end{vmatrix}$ $\xlongequal{5C_{1}-C_{2}} \begin{vmatrix} 0 & 5\\ 7 & 8 \end{vmatrix}$
  8. El determinante de una matriz es igual al determinante de su transpuesta.
  9. El determinante del producto de dos matrices cuadradas es igual al producto de los determinantes de las matrices dadas.

Menor de una matriz

El determinante obtenido mediante la eliminación de algunas filas y columnas en una matriz cuadrada se denomina menor de esa matriz.

Ejemplo 21
$A=\begin{pmatrix} 1 & 4 & 2 \\ 5 & 3 & 7 \\ 6 & 2 & 1 \end{pmatrix}$

Uno de los menores de la matriz A es $\begin{vmatrix} 1 & 4\\ 5 & 3 \end{vmatrix}$ (obtenido a través de la eliminación de la fila 3 y la columna 3 de la matriz A)

Otro menor es $\begin{vmatrix} 1 & 2 \\ 6 & 1 \end{vmatrix}$ (obtenido a través de la eliminación de la fila 2 y la columna 2 de la matriz A)

Ejemplo 22
$B=\begin{pmatrix} 2 & 5 & 1 & 3\\ 4 & 1 & 7 & 9\\ 6 & 8 & 3 & 2\\ 7 & 8 & 1 & 4 \end{pmatrix} $

Uno de los menores de la matriz B es $ \begin{vmatrix} 1 & 7 & 9\\ 8 & 3 & 2\\ 8 & 1 & 4 \end{vmatrix}$ (obtenido a través de la eliminación de la fila 1 y la columna 1 de la matriz B)

Otro menor es $\begin{vmatrix} 1 & 7 \\ 8 & 3 \end{vmatrix}$ (obtenido mediante la eliminación de las filas 1 y 4 y las columnas 1 y 4 de la matriz B)

Sea $A= \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & . & . & a_{1,n}\\ a_{2,1} & a_{2,2} & a_{2,3} & . & . & a_{2,n}\\ a_{3,1} & a_{3,2} & a_{3,3} & . & . & a_{3,n}\\ . & . & . & . & .& .\\ a_{n,1} & a_{n,2} & a_{n,3} & . & . & a_{n,n} \end{pmatrix}$

Podemos asociar al menor $\Delta_{i,j}$ (obtenido a través de la eliminación de la fila i y la columna j) con cualquier elemento $a_{i,j}$ de la matriz A.

Ejemplo 23
$ A = \begin{pmatrix} 4 & 7\\ 2 & 9 \end{pmatrix}$

Tenemos que determinar el menor asociado a 2. Dado que este elemento se encuentra en la fila 2, columna 1, entonces 2 es $a_{2,1}$.

Tenemos que eliminar la fila 2 y la columna 1 de la matriz A, lo que resulta en

El menor de 2 es $\Delta_{2,1} = 7$.

Ejemplo 24
$B=\begin{pmatrix} 1 & 4 & 2 \\ 5 & 3 & 7 \\ 6 & 2 & 1 \end{pmatrix}$

Tenemos que determinar el menor asociado a 7. Dado que este elemento se encuentra en la fila 2, columna 3, entonces 7 es $a_{2,3}$.

Tenemos que eliminar la fila 2 y la columna 3 de la matriz B, lo que resulta en

El menor de 7 es $\Delta_{2,3}= \begin{vmatrix} 1 & 4\\ 6 & 2 \end{vmatrix}$

Ejemplo 25
$C=\begin{pmatrix} 2 & 5 & 1 & 3\\ 4 & 1 & 7 & 9\\ 6 & 8 & 3 & 2\\ 7 & 8 & 1 & 4 \end{pmatrix}$

Tenemos que determinar el menor asociado a 5. Dado que este elemento se encuentra en la fila 1, columna 2, entonces 5 es $a_{1,2}$.

Tenemos que eliminar la fila 1 y la columna 2 de la matriz C, lo que resulta en

El menor de 5 es $\Delta_{1,2}= \begin{vmatrix} 4 & 7 & 9\\ 6 & 3 & 2\\ 7 & 1 & 4\\ \end{vmatrix}$

Cofactor de un elemento de una matriz

Sea $A=\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & . & . & a_{1,n}\\ a_{2,1} & a_{2,2} & a_{2,3} & . & . & a_{2,n}\\ a_{3,1} & a_{3,2} & a_{3,3} & . & . & a_{3,n}\\ . & . & . & . & .& .\\ a_{n,1} & a_{n,2} & a_{n,3} & . & . & a_{n,n}\\ \end{pmatrix}$

El cofactor $(-1)^{i+j}\cdot\Delta_{i,j}$ corresponde a cualquier elemento $a_{i,j}$ en la matriz A. Por ejemplo, el cofactor $(-1)^{2+5}\cdot\Delta_{2,5}=(-1)^{7}\cdot\Delta_{2,5}= -\Delta_{2,5} $ corresponde al elemento $ a_{2.5}$

Orden de un determinante

El orden de un determinante es igual a su número de filas y columnas.

Ejemplo 26
$\begin{vmatrix} 1 & 4\\ 6 & 2\\ \end{vmatrix}$ (Tiene 2 líneas y 2 columnas, por lo que su orden es de 2)

Ejemplo 27
$\begin{vmatrix} 4 & 7 & 9\\ 6 & 3 & 2\\ 7 & 1 & 4\\ \end{vmatrix}$ (Tiene 3 líneas y 3 columnas, por lo que su orden es de 3)

Cálculo del determinante de una matriz

El determinante de una matriz es igual a la suma de los productos de los elementos de cualquier fila o columna y sus cofactores.

$\left| A\right| = \begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} & . & . & a_{1,n}\\ a_{2,1} & a_{2,2} & a_{2,3} & . & . & a_{2,n}\\ a_{3,1} & a_{3,2} & a_{3,3} & . & . & a_{3,n}\\ . & . & . & . & .& .\\ a_{n,1} & a_{n,2} & a_{n,3} & . & . & a_{n,n}\\ \end{vmatrix}$

Podemos calcular el determinante usando, por ejemplo, la fila i:

$\left| A\right| =a_{i,1}\cdot(-1)^{i+1}\cdot\Delta_{i,1}$ $+a_{i,2}\cdot(-1)^{i+2}\cdot\Delta_{i,2}+a_{i,3}\cdot(-1)^{i+3}\cdot\Delta_{i,3}+...$ $+a_{i,n}\cdot(-1)^{i+n}\cdot\Delta_{i,n}$

Alternativamente, podemos calcular el determinante usando la fila j:

$\left| A\right| =a_{1,j}\cdot(-1)^{1+j}\cdot\Delta_{1,j}$ $+a_{2,j}\cdot(-1)^{2+j}\cdot\Delta_{2,j}+a_{3,j}\cdot(-1)^{3+j}\cdot\Delta_{3,j}+...$ $+a_{n,j}\cdot(-1)^{n+j}\cdot\Delta_{n,j}$

Cálculo de un determinante 2x2

Usemos la fila 1 para calcular el determinante.

$\left| A\right| = \begin{vmatrix} a_{1,1} & a_{1,2}\\ a_{2,1} & a_{2,2}\\ \end{vmatrix} = a_{1,1}\cdot(-1)^{1+1}\cdot\Delta_{1,1}+a_{1.2}\cdot(-1)^{1+2}\cdot\Delta_{1,2}=$

$a_{1,1}\cdot(-1)^{2}\cdot\Delta_{1,1}+a_{1.2}\cdot(-1)^{3}\cdot\Delta_{1,2}=a_{1,1}\cdot\Delta_{1,1}-a_{1.2}\cdot\Delta_{1,2}$

Sin embargo, $ \Delta_{1,1}= a_{2,2} $ and $ \Delta_{1,2}=a_{2,1}$

$ \left| A\right| =a_{1.1} \cdot a_{2,2}- a_{1.2} \cdot a_{2,1}$

$\color{red}{ \begin{vmatrix} a & b\\ c & d \end{vmatrix} =a \cdot d - b \cdot c}$

Ejemplo 28
$\begin{vmatrix} 2 & 5\\ 3 & 8 \end{vmatrix} =2 \cdot 8 - 3 \cdot 5 = 16 -15 =1$

Ejemplo 29
$\begin{vmatrix} -4 & 7\\ -2 & 9 \end{vmatrix} =-4 \cdot 9 - 7 \cdot (-2) = -36 -(-14) =-36 + 14 = - 22$

Cálculo de un determinante 3x3

Usemos la fila 1 para calcular el determinante.

$ \left| A\right| = \begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3}\\ a_{2,1} & a_{2,2} & a_{2,3}\\ a_{3,1} & a_{3,2} & a_{3,3} \end{vmatrix} =$ $a_{1,1}\cdot(-1)^{1+1}\cdot\Delta_{1,1}+a_{1.2}\cdot(-1)^{1+2}\cdot\Delta_{1,2}$ $+a_{1.3}\cdot(-1)^{1+3}\cdot\Delta_{1,3}=$ $=a_{1,1}\cdot(-1)^{2}\cdot\Delta_{1,1}+a_{1.2}\cdot(-1)^{3}\cdot\Delta_{1,2}$ $+a_{1.3}\cdot(-1)^{4}\cdot\Delta_{1,3}=$ $a_{1,1}\cdot\Delta_{1,1}-a_{1.2}\cdot\Delta_{1,2}+a_{1.3}\cdot\Delta_{1,3}$

$\Delta_{1,1}= \begin{vmatrix} a_{2,2} & a_{2,3}\\ a_{3,2} & a_{3,3} \end{vmatrix} = a_{2,2}\cdot a_{3,3}-a_{2,3}\cdot a_{3,2}$

$\Delta_{1,2}= \begin{vmatrix} a_{2,1} & a_{2,3}\\ a_{3,1} & a_{3,3} \end{vmatrix} = a_{2,1}\cdot a_{3,3}-a_{2,3}\cdot a_{3,1}$

$\Delta_{1,3}= \begin{vmatrix} a_{2,1} & a_{2,2}\\ a_{3,1} & a_{3,2} \end{vmatrix} = a_{2,1}\cdot a_{3,2}-a_{2,2}\cdot a_{3,1}$

$\left| A\right| =a_{1,1}\cdot( a_{2,2}\cdot a_{3,3}-a_{2,3}\cdot a_{3,2})-a_{1,2}\cdot(a_{2,1}\cdot a_{3,3}-a_{2,3}\cdot a_{3,1})+$ $a_{1,3}\cdot(a_{2,1}\cdot a_{3,2}-a_{2,2}\cdot a_{3,1})=$ $a_{1,1}\cdot a_{2,2}\cdot a_{3,3}-a_{1,1}\cdot a_{2,3}\cdot a_{3,2}-a_{1,2}\cdot a_{2.1}\cdot a_{3,3}+a_{1,2}\cdot a_{2,3}\cdot a_{3,1}+$ $a_{1,3}\cdot a_{2,1}\cdot a_{3,2}-a_{1,3}\cdot a_{2,2}\cdot a_{3,1}=$ $\color{red}{a_{1,1}\cdot a_{2,2}\cdot a_{3,3}+a_{1,2}\cdot a_{2,3}\cdot a_{3,1}+a_{1,3}\cdot a_{2,1}\cdot a_{3,2}-}$ $\color{red}{(a_{1,1}\cdot a_{2,3}\cdot a_{3,2}+a_{1,2}\cdot a_{2,1}\cdot a_{3,3}+a_{1,3}\cdot a_{2,2}\cdot a_{3,1})}$

Para llegar más rápido a la última relación podemos usar el siguiente método.

Primero, reescribimos las dos primeras filas debajo del determinante, de la siguiente manera.

$\begin{vmatrix} \color{red}{a_{1,1}} & a_{1,2} & a_{1,3}\\ \color{red}{a_{2,1}} & \color{red}{a_{2,2}} & a_{2,3}\\ \color{red}{a_{3,1}} & \color{red}{a_{3,2}} & \color{red}{a_{3,3}} \end{vmatrix}$
$\hspace{2mm}\begin{array}{ccc} a_{1,1} & \color{red}{a_{1,2}} & \color{red}{a_{1,3}}\\ a_{2,1} & a_{2,2} & \color{red}{a_{2,3}}\\ \end{array}$

Multiplicamos los elementos en cada una de las tres diagonales rojas (la diagonal principal y las que están debajo) y sumamos los resultados:
$\color{red}{a_{1,1}\cdot a_{2,2}\cdot a_{3,3}+ a_{2,1}\cdot a_{3,2}\cdot a_{1,3}+a_{3,1}\cdot a_{1,2}\cdot a_{2,3}}$

$\begin{vmatrix} \color{red}{a_{1,1}} & \color{red}{a_{1,2}} & \color{blue}{a_{1,3}}\\ \color{red}{a_{2,1}} & \color{blue}{a_{2,2}} & \color{blue}{a_{2,3}}\\ \color{blue}{a_{3,1}} & \color{blue}{a_{3,2}} & \color{blue}{a_{3,3}} \end{vmatrix}$
$\hspace{2mm} \begin{array}{ccc} \color{blue}{a_{1,1}} & \color{blue}{a_{1,2}} & \color{red}{a_{1,3}}\\ \color{blue}{a_{2,1}} & \color{red}{a_{2,2}} & \color{red}{a_{2,3}}\\ \end{array}$

Multiplicamos los elementos en cada una de las tres diagonales azules (la diagonal secundaria y las que están debajo) y sumamos los resultados:

$\color{blue}{a_{1,3}\cdot a_{2,2}\cdot a_{3,1}+ a_{2,3}\cdot a_{3,2}\cdot a_{1,1}+a_{3,3}\cdot a_{1,2}\cdot a_{2,1}}$

Si restamos las dos relaciones obtenemos la fórmula del determinante:

$\color{red}{a_{1,1}\cdot a_{2,2}\cdot a_{3,3}+ a_{2,1}\cdot a_{3,2}\cdot a_{1,3}+a_{3,1}\cdot a_{1,2}\cdot a_{2,3}-}$ $\color{red}{(a_{1,3}\cdot a_{2,2}\cdot a_{3,1}+ a_{2,3}\cdot a_{3,2}\cdot a_{1,1}+a_{3,3}\cdot a_{1,2}\cdot a_{2,1})}$

Ejemplo 30
$A=\begin{pmatrix} 1 & 4 & 3 \\ 2 & 1 & 5\\ 3 & 2 & 1\\ \end{pmatrix}$

$\begin{vmatrix} 1 & 4 & 3 \\ 2 & 1 & 5\\ 3 & 2 & 1\\ \end{vmatrix}$
$\hspace{2mm}\begin{array}{ccc} 1 & 4 & 3\\ 2 & 1 & 5\\ \end{array}$

$ = 1\cdot1\cdot1 + 2\cdot2\cdot3 + 3\cdot4\cdot5 -(3\cdot1\cdot3 + 5\cdot2\cdot1 + 1\cdot4\cdot2) =$ $ 1 + 12 + 60 -(9 + 10 + 8)=73-27=46$

Ejemplo 31
$A=\begin{pmatrix} 3 & 5 & 1 \\ 1 & 4 & 2\\ 7 & 1 & 9\\ \end{pmatrix}$

$\begin{vmatrix} 3 & 5 & 1 \\ 1 & 4 & 2\\ 7 & 1 & 9\\ \end{vmatrix}$
$\hspace{2mm}\begin{array}{ccc} 3 & 5 & 1\\ 1 & 4 & 2\\ \end{array} $

$= 3\cdot4\cdot9 + 1\cdot1\cdot1 + 7\cdot5\cdot2 -(1\cdot4\cdot7 + 2\cdot1\cdot3 + 9\cdot5\cdot1) =$ $ 108 + 1 + 70 -(28 + 6 + 45)=79-79=100$

Hay determinantes cuyos elementos son letras. Se pueden calcular más fácilmente utilizando las propiedades de los determinantes. Por ejemplo, calculamos el determinante de una matriz en la que hay los mismos elementos en cualquier fila o columna, pero reordenados.

$\begin{vmatrix} a & b & c\\ c & a & b\\ b & c & a \end{vmatrix}$ $ \xlongequal{C_{1}+C_{2}+C_{3}} \begin{vmatrix} a + b + c & b & c\\ c + a + b & a & b\\ b + c + a & c & a \end{vmatrix} = (a + b + c) \cdot \begin{vmatrix} 1 & b & c\\ 1 & a & b\\ 1 & c & a \end{vmatrix}$

Calculemos el último determinante:

$\begin{vmatrix} 1 & b & c\\ 1 & a & b\\ 1 & c & a \end{vmatrix}$
$\hspace{2mm}\begin{array}{ccc} 1 & b & c\\ 1 & a & b \end{array}$

$ = a^{2} + b^{2} + c^{2} -a\cdot c - b\cdot c - a\cdot b =$ $\frac{1}{2}\cdot(2a^{2} +2b^{2}+2c^{2} -2a\cdot b -2a\cdot c-2b\cdot c) =$ $\frac{1}{2}\cdot(a^{2}-2a\cdot b + b^{2}+ a^{2}-2a\cdot c +c^{2}+b^{2}-2b\cdot c + c^{2})=$ $\frac{1}{2}\cdot[(a-b)^{2}+(a-c)^{2}+(b-c)^{2}]$

En conclusión

$\begin{vmatrix} a & b & c\\ c & a & b\\ b & c & a \end{vmatrix}=$ $\frac{1}{2}\cdot(a+b+c)\cdot[(a-b)^{2}+(a-c)^{2}+(b-c)^{2}]$

Ejemplo 32
Calculemos el determinante de una matriz de Vandermonde.
$\begin{vmatrix} 1 & 1 & 1\\ a & b & c\\ a^{2} & b^{2} & c^{2} \end{vmatrix}$

Usando las propiedades de los determinantes, modificamos la fila 1 para tener dos elementos iguales a 0. En este caso, cuando aplicamos la fórmula, no es necesario calcular los cofactores de estos elementos porque su producto será 0.

$\begin{vmatrix} 1 & 1 & 1\\ a & b & c\\ a^{2} & b^{2} & c^{2}\\ \end{vmatrix}$ $\xlongequal{C_{1}- C_{3}\\C_{2} -C_{3}} \begin{vmatrix} 0 & 0 & 1\\ a-c & b-c & c\\ a^{2}- c^{2} & b^{2}-c^{2} & c^{2} \end{vmatrix}=$ $1\cdot(-1)^{1+3}\cdot \begin{vmatrix} a-c & b-c \\ a^{2}- c^{2} & b^{2}-c^{2} \end{vmatrix}= $

$\begin{vmatrix} a-c & b-c \\ (a-c)(a+c) & (b-c)(b+c) \end{vmatrix}=$ $(a-c)(b-c)\begin{vmatrix} 1 & 1\\ a+c & b+c \end{vmatrix}=$

$=(a-c)(b-c)[(b+c)-(a+c)]=$ $(a-c)(b-c)(b+c-a-c)=(a-c)(b-c)(b-a)$

Cálculo de un determinante 4x4

Para calcular los determinantes 4x4, utilizamos la fórmula general.

Antes de aplicar la fórmula utilizando las propiedades de los determinantes:

  1. Verificamos si se cumple alguna de las condiciones para que el valor del determinante sea 0.
  2. Verificamos si podemos factorizar fuera de cualquier fila o columna.
  3. Verificamos si el determinante es una matriz de Vandermonde o si tiene los mismos elementos, pero reordenados, en cualquier fila o columna.

En cualquiera de estos casos, usamos los métodos correspondientes para calcular los determinantes 3x3. Modificamos una fila o una columna para llenarla con 0, excepto por un elemento. El determinante será igual al producto de ese elemento y su cofactor. En este caso, el cofactor es un determinante 3x3 que se calcula con su fórmula específica.

Ejemplo 33
$\begin{vmatrix} 1 & 3 & 9 & 2\\ 5 & 8 & 4 & 3\\ 0 & 0 & 0 & 0\\ 2 & 3 & 1 & 8 \end{vmatrix}$

Notemos que todos los elementos en la fila 3 son 0, por lo que el determinante es 0.

Ejemplo 34
$\begin{vmatrix} 1 & 3 & 1 & 2\\ 5 & 8 & 5 & 3\\ 0 & 4 & 0 & 0\\ 2 & 3 & 2 & 8 \end{vmatrix}$
Notemos que $C_{1}$ and $C_{3}$ son iguales, por lo que el determinante es 0.

Ejemplo 35
$\begin{vmatrix} 1 & 3 & 9 & 2\\ 5 & 8 & 4 & 3\\ 10 & 16 & 18 & 4\\ 2 & 3 & 1 & 8 \end{vmatrix}$
Notemos que las filas 2 y 3 son proporcionales, por lo que el determinante es 0.

Ejemplo 36
$\begin{vmatrix} \color{red}{4} & 3 & 2 & 2\\ 0 & 1 & -3 & 3\\ 0 & -1 & 3 & 3\\ 0 & 3 & 1 & 1 \end{vmatrix}$

Como solo hay un elemento diferente de 0 en la columna 1, aplicamos la fórmula general usando esta columna. Los cofactores correspondientes a los elementos que son 0 no necesitan calcularse porque el producto de ellos y estos elementos serán 0.

=
$=4(1\cdot3\cdot1 +(-1)\cdot1\cdot3+3\cdot(-3)\cdot3$ $-(3\cdot3\cdot3+3\cdot1\cdot1 +1\cdot(-3)\cdot(-1)))$ $=4(3-3-27-(27+3+3))=4\cdot(-60)=-240$

Ejemplo 37
$\begin{vmatrix} 4 & 3 & 2 & 2\\ 0 & 1 & 0 & -2\\ 1 & -1 & 3 & 3\\ 2 & 3 & 1 & 1 \end{vmatrix}$

Para modificar filas para tener más ceros, operamos con columnas y viceversa. Escogemos una fila o columna que contenga el elemento 1 porque podemos obtener cualquier número a través de la multiplicación.

Notemos que ya hay dos elementos iguales a 0 en la fila 2. Solo hacemos otro 0 para calcular solo el cofactor de 1.

$\begin{vmatrix} 4 & 3 & 2 & 2\\ 0 & 1 & 0 & -2\\ 1 & -1 & 3 & 3\\ 2 & 3 & 1 & 1 \end{vmatrix} \xlongequal{C_{4}+2C_{2}}$ $\begin{vmatrix} 4 & 3 & 2 & 8\\ 0 & \color{red}{1} & 0 & 0\\ 1 & -1 & 3 & 1\\ 2 & 3 & 1 & 7 \end{vmatrix}=$ $=$

$= 1\cdot(-1)^{2+2}\cdot \begin{vmatrix} 4 & 2 & 8\\ 1 & 3 & 1\\ 2 & 1 & 7 \end{vmatrix}=$
$=4\cdot3\cdot7 + 1\cdot1\cdot8 + 2\cdot2\cdot1$ $-(8\cdot3\cdot2 + 1\cdot1\cdot4 + 7\cdot2\cdot1) =$ $ 84 + 8 + 4- 48-4-14=30$

Ejemplo 38
$\begin{vmatrix} 1 & -2 & 3 & 2\\ 2 & 3 & 1 & -1\\ 3 & 3 & 3 & 3\\ -1 & 4 & 2 & 1\\ \end{vmatrix}$

Podemos factorizar 3 de la fila 3:
$3\cdot \begin{vmatrix} 1 & -2 & 3 & 2\\ 2 & 3 & 1 & -1\\ 1 & 1 & 1 & 1\\ -1 & 4 & 2 & 1\\ \end{vmatrix}$

Dado que solo hay elementos iguales a 1 en la fila 3, podemos hacer ceros fácilmente.

$\begin{vmatrix} 1 & -2 & 3 & 2\\ 2 & 3 & 1 & -1\\ 1 & 1 & 1 & 1\\ -1 & 4 & 2 & 1 \end{vmatrix}$ $ \xlongequal{C_{1} - C_{4},C_{2}-C_{4},C_{3}-C_{4}} \begin{vmatrix} -1 & -4 & 1 & 2\\ 3 & 4 & 2 & -1\\ 0 & 0 & 0 & \color{red}{1}\\ -2 & 3 & 1 & 1 \end{vmatrix}$ $=1\cdot(-1)^{3+4}\cdot$ $=(-1)\cdot \begin{vmatrix} -1 & -4 & 1\\ 3 & 4 & 2 \\ -2 & 3 & 1\\ \end{vmatrix}$
$=-((-1)\cdot 4\cdot 1 +3 \cdot 3\cdot1 + (-2)\cdot (-4)\cdot 2$ $- (1\cdot 4\cdot (-2) + 2\cdot 3\cdot (-1) + 1\cdot (-4)\cdot3))$ $=-(-4 + 9 + 16 + 8 + 6 + 12) =-47$

Ejemplo 39
$\begin{vmatrix} 2 & 5 & 1 & 4\\ 4 & 1 & 6 & 3\\ 5 & 3 & 7 & 2\\ 1 & 0 & 2 & 4 \end{vmatrix}$

En este ejemplo, podemos usar la última fila (que contiene 1) y podemos hacer ceros en la primera columna.

$\begin{vmatrix} 2 & 5 & 1 & 4\\ 4 & 1 & 6 & 3\\ 5 & 3 & 7 & 2\\ 1 & 0 & 2 & 4 \end{vmatrix}$ $\xlongequal{R_{1}-2R_{4},R_{2}-4R_{4}, R_{3}-5R_{4}} \begin{vmatrix} 0 & 5 & -3 & -4\\ 0 & 1 & -2 & -13\\ 0 & 3 & -3 & -18\\ \color{red}{1} & 0 & 2 & 4 \end{vmatrix}=$ $=1\cdot(-1)^{4+1}\cdot \begin{vmatrix} 5 & -3 & -4\\ 1 & -2 & -13\\ 3 & -3 & -18 \end{vmatrix}=$ $(-1)\cdot \begin{vmatrix} 5 & -3 & -4\\ 1 & -2 & -13\\ 3 & -3 & -18 \end{vmatrix}$

Factorizamos -1 de la columna 2 y -1 de la columna 3.
$ (-1)\cdot(-1)\cdot(-1)\cdot \begin{vmatrix} 5 & 3 & 4\\ 1 & 2 & 13\\ 3 & 3 & 18 \end{vmatrix}=$ $(-1)\cdot \begin{vmatrix} 5 & 3 & 4\\ 1 & 2 & 13\\ 3 & 3 & 18 \end{vmatrix}=$ $-[5\cdot 2\cdot 18 + 1\cdot 3\cdot 4+ 3\cdot 3\cdot 13 - (4\cdot 2\cdot 3\cdot + 13\cdot 3\cdot 5 + 18\cdot 3\cdot 1)]=$ $-(180+12+117-24-195-54)=36$

Ejemplo 40
$\begin{vmatrix} 4 & 7 & 2 & 3\\ 1 & 3 & 1 & 2\\ 2 & 5 & 3 & 4\\ 1 & 4 & 2 & 3 \end{vmatrix}$

Hay un 1 en la columna 3, así que haremos ceros en la fila 2.

$\begin{vmatrix} 4 & 7 & 2 & 3\\ 1 & 3 & 1 & 2\\ 2 & 5 & 3 & 4\\ 1 & 4 & 2 & 3 \end{vmatrix}$ $\xlongequal{C_{1}-C_{3}, C_{2}-3C_{3},C_{4}-2C_{3}} \begin{vmatrix} 2 & 1 & 2 & -1\\ 0 & 0 & \color{red}{1} & 0 \\ -1 & -4 & 3 & -2\\ -1 & -2 & 2 & -1 \end{vmatrix}=$ $=1\cdot(-1)^{2+5}\cdot \begin{vmatrix} 2 & 1 & -1\\ -1 & -4 & -2\\ -1 & -2 & -1 \end{vmatrix}$

Factorizamos -1 de la fila 2 y -1 de la fila 3.
$ (-1)\cdot(-1)\cdot(-1)\cdot \begin{vmatrix} 2 & 1 & -1\\ 1 & 4 & 2\\ 1 & 2 & 1 \end{vmatrix}=$ $(-1)\cdot \begin{vmatrix} 2 & 1 & -1\\ 1 & 4 & 2\\ 1 & 2 & 1 \end{vmatrix}=$ $-[2\cdot 4\cdot 1 + 1\cdot 2\cdot (-1)+ 1\cdot 1\cdot 2 - ((-1)\cdot 4\cdot 1 + 2\cdot 2\cdot 2 + 1\cdot 1\cdot 1)]=$ $-(8-2+2+4-8-1)=-3$

Ejemplo 41
$\begin{vmatrix} 2 & 1 & 3 & 4\\ 1 & 3 & 4 & 2\\ 3 & 4 & 2 & 1\\ 4 & 2 & 1 & 3\\ \end{vmatrix}$

Notemos que cualquier fila o columna tiene los mismos elementos, pero reordenada. En este caso, sumamos todas las líneas o todas las columnas.

$\begin{vmatrix} 2 & 1 & 3 & 4\\ 1 & 3 & 4 & 2\\ 3 & 4 & 2 & 1\\ 4 & 2 & 1 & 3 \end{vmatrix}$ $\xlongequal{L_{1}+L_{2}+L_{3}+L_{4}} \begin{vmatrix} 10 & 10 & 10 & 10\\ 1 & 3 & 4 & 2\\ 3 & 4 & 2 & 1\\ 4 & 2 & 1 & 3 \end{vmatrix} =$ $10\cdot \begin{vmatrix} 1 & 1 & 1 & 1\\ 1 & 3 & 4 & 2\\ 3 & 4 & 2 & 1\\ 4 & 2 & 1 & 3 \end{vmatrix}$ $\xlongequal{C_{1} - C_{4},C_{2}-C_{4},C_{3}-C_{4}}10\cdot \begin{vmatrix} 0 & 0 & 0 & \color{red}{1}\\ -1 & 1 & 2 & 2\\ 2 & 3 & 1 & 1\\ 1 & -1 & -2 & 3 \end{vmatrix}=$

$=10\cdot1\cdot(-1)^{1+4}$

$ = (-10)\cdot \begin{vmatrix} -1 & 1 & 2\\ 2 & 3 & 1\\ 1 & -1 & -2 \end{vmatrix}=$ $(-10)\cdot((-1)\cdot 3\cdot (-2) +2 \cdot (-1)\cdot2 + 1\cdot 1\cdot 1$ $-(2\cdot 3\cdot 1 + 1\cdot (-1)\cdot (-1) + (-2)\cdot1\cdot2))$ $= -10\cdot(6 -4 +1 -6 - 1 + 4) =0$


Email de contacto:
Copyright © 2005 - 2024