MENU
❌
Home
Math Forum/Help
Problem Solver
Practice
Worksheets
Tests
Algebra
Geometry
College Math
History
Games
MAIN MENU
1 Grade
Adding and subtracting up to 10
Comparing numbers up to 10
Adding and subtracting up to 20
Addition and Subtraction within 20
2 Grade
Adding and Subtracting up to 100
Addition and Subtraction within 20
3 Grade
Addition and Subtraction within 1000
Multiplication up to 5
Multiplication Table
Dividing
Rounding
Addition, Multiplication, Division
Perimeter
4 Grade
Adding and Subtracting
Addition, Multiplication, Division
Equivalent Fractions
Divisibility by 2, 3, 4, 5, 9
Area of Squares and Rectangles
Fractions
Equivalent Fractions
Least Common Multiple
Adding and Subtracting
Fraction Multiplication and Division
Operations
Mixed Numbers
Decimals
Expressions
6 Grade
Percents
Signed Numbers
The Coordinate Plane
Equations
Expressions
Polynomials
Symplifying Expressions
Polynomial Vocabulary
Polynomial Expressions
Factoring
7 Grade
Angles
Inequalities
Linear Functions
8 Grade
Congurence of Triangles
Linear Functions
Systems of equations
Slope
Parametric Linear Equations
Word Problems
Exponents
Roots
Quadratic Equations
Quadratic Inequalities
Rational Inequalities
Vieta's Formulas
Progressions
Arithmetic Progressions
Geometric Progression
Progressions
Number Sequences
Reciprocal Equations
Logarithms
Logarithmic Expressions
Logarithmic Equations
Logarithmic Equations
Logarithmic Inequalities
Irrational Equations
Irrational Inequalities
Trigonometry
Trigonometry
Identities
Trigonometry
Trigonometric Equations
Trigonometric Inequalities
Extremal value problems
Numbers Classification
Geometry
Slope
Intercept Theorem
Law of Sines
Law of Cosines
Vectors
Modulus Inequalities
Exponential Inequalities
Exponential Equations
Modulus equations
Probabilities
Functions
Min, Max Values
Limits
Limits of Functions
Monotonicity of Functions
Properties of Triangles
Pythagorean Theorem
Matrices
Complex Numbers
Inverse Trigonometric Functions
Analytic Geometry
Analytic Geometry
Circle
Parabola
Ellipse
Conic sections
Polar coordinates
Derivatives
Derivatives
Applications of Derivatives
Derivatives
Integrals
Integrals
Integration by Parts
Trigonometric Substitutions
Application
Differential Equations
Home
Practice
Trigonometry Problems - sin, cos, tan, cot
Easy
Normal
Difficult
Trigonometry Problems - sin, cos, tan, cot: Problems with Solutions
Trigonometry - additional questions
Trigonometric identities
Problem 1
sin(A) =
$\frac{61}{11}$
$\frac{60}{61}$
$\frac{11}{61}$
$\frac{11}{60}$
Solution:
$\sin(A) = \frac{11}{61}$
Problem 2
tan(A) =
$\frac{11}{61}$
$\frac{61}{11}$
$\frac{60}{11}$
$\frac{11}{60}$
Solution:
$tan(A) = \frac{11}{60}$
Problem 3
cot(A) =
$\frac{61}{60}$
$\frac{11}{60}$
$\frac{61}{11}$
$\frac{60}{11}$
Solution:
$cot(A) = \frac{60}{11}$
Problem 4
sin(30°)=
$\frac14$
$\frac13$
$\frac12$
$\frac{\sqrt{2}}{2}$
Solution:
$\sin(30°)=\frac{1}{2}$
Problem 5
cos(90°) =
Solution:
cos(90°) = 0
Problem 6
sin
2
(43°) + cos
2
(43°) =
Solution:
Since $\sin^2\alpha + \cos^2\alpha = 1$,
sin
2
(43°) + cos
2
(43°) = 1
Problem 7
Find [tex]\cos\alpha[/tex], [tex]\tan\alpha[/tex], [tex]\cot\alpha[/tex], if [tex]\sin\alpha = {\frac{5}{13}}[/tex] and [tex]{\frac{\pi}{2}} < \alpha < \pi[/tex].
Solution:
[tex]\alpha[/tex] belongs to the II quadrant => [tex]cos\alpha[/tex] < 0, and [tex]cos\alpha=-\sqrt{1-sin^2\alpha}=-\sqrt{1-{\frac{25}{169}}}=-{\frac{12}{13}}[/tex]
[tex]tan\alpha=-{\frac{5}{12}}[/tex]
[tex]cot\alpha=-{\frac{12}{5}}[/tex].
Problem 8
Find $\cot(\pi + x) = ?$
cot(x)
tan(x)
sin(x)
$\frac{1}{cot(x)}$
Solution:
$\cot(\pi + x)=cot(x)$
Problem 9
Calculate sin(-585°).
[tex]\frac{1}{3}[/tex]
[tex]\frac{\sqrt{2}}{3}[/tex]
$\frac12$
[tex]\frac{\sqrt{2}}{2}[/tex]
Solution:
sin(-585°)=-sin(585°)=-sin(2π+225°)=-sin225°=-sin(π+45°)=sin45°=[tex]{\frac{\sqrt{2}}{2}}[/tex]
Problem 10
Calculate $\tan(270^{\circ}+\alpha)$.
$\tan(\alpha+30)$
$\cot\alpha$
$-\cot\alpha$
$-\tan(\alpha+30)$
Solution:
[tex]\tan(270^\circ+\alpha)=\tan({\frac{3\pi}{2}}+\alpha)=-\cot\alpha[/tex]
Problem 11
Find the exact value of [tex]cos{\frac{8\pi}{3}} = ?[/tex].
$-\frac{1}{3}$
$\frac{1}{2}$
$-\frac{1}{2}$
$-\frac{\sqrt{2}}{2}$
Solution:
[tex]cos{\frac{8\pi}{3}}=cos(3\pi-{\frac{\pi}{3}})=cos(\pi-\frac{\pi}{3})=-cos{\frac{\pi}{3}}=-{\frac{1}{2}}[/tex]
Problem 12
Calculate [tex]\sin 945^{\circ}[/tex].
$-\frac{\sqrt{3}}{2}$
$\sqrt{2}$
$-\frac{\sqrt{2}}{2}$
$-\frac{\sqrt{2}}{4}$
Solution:
[tex]\sin 945^{\circ}[/tex][tex]=[/tex][tex]\sin(720^{\circ}+ 225^{\circ})[/tex]= [tex]\sin(225^{\circ}+2*360^{\circ})[/tex]= [tex]\sin225^{\circ}[/tex]= [tex]\sin(225^{\circ}-360^{\circ})[/tex]= [tex]\sin(-135^{\circ})[/tex]=[tex]-\sin 135^{\circ}=- \frac{1}{\sqrt{2}}=-\frac{\sqrt{2}}{2}[/tex]
Problem 13
cos(24°) + cos(5°) + cos(175°) + cos(204°) + cos(300°) =
$\frac{\sqrt{2}}{2}$
$\frac12$
$\frac13$
$-\frac12$
Solution:
cos(175°) = cos(180 - 5) = -cos(5)
cos(204°) =cos(180+24) = -cos(24)
cos(300°) = cos(360-60) = cos(60)
So result would be cos(60) that is 1/2
Problem 14 sent by Vasa Shanmukha Reddy
If cot(x) = 2 then find $\frac{(2+2\sin x)(1-\sin x)}{(1+\cos x)(2-2\cos x)}$
Solution:
Cot x=2
$\frac{(2+2\sin x)(1-\sin x)}{(1+\cos x)(2-2\cos x)} = \frac{2[(1+\sin x)(1-\sin x)]}{2[(1+\cos x)(1-\cos x)]}=$
$\frac{1-\sin^2x}{1-\cos^2x} = \frac{\cos^2x}{\sin^2x}=\big(\frac{\cos x}{\sin x}\big)^2 =\cot^2x =2^2 =4$
Problem 15
Find the exact value of cos 15°.
$\frac{\sqrt{6}+\sqrt{2}}{4}$
$\frac{\sqrt{2}}{4}$
$\frac{1}{4}$
$\frac{\sqrt{2}}{2}$
Solution:
cos 15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=[tex]{\frac{\sqrt{2}}{2}}.{\frac{\sqrt{3}}{2}}+{\frac{\sqrt{2}}{2}}.{\frac{1}{2}}={\frac{\sqrt{6}+\sqrt{2}}{4}}[/tex].
Problem 16
Calculate sin75°sin15° =
$\frac{\sqrt{2}}{2}$
$\frac{\sqrt{3}}{2}$
$\frac14$
$\frac12$
Solution:
sin75°sin15°=sin(90°-15°)=cos15°sin15°=[tex]{\frac{1}{2}}sin30^{\circ}={\frac{1}{4}}[/tex]
Problem 17
Calculate the exact value of sin15°.
$\frac{\sqrt{3}}{2}$
$\frac{\sqrt{6}}{4}$
$\frac{\sqrt{2}-\sqrt{6}}{4}$
$\frac{\sqrt{6}-\sqrt{2}}{4}$
Solution:
sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=[tex]{\frac{\sqrt{6}-\sqrt{2}}{4}}[/tex].
Problem 18
Find the exact value of sin4α+cos4αcot2α, if tan2α=4.
$\frac{\sqrt{3}}{4}$
$\frac{\sqrt{6}}{2}$
$\frac{1}{2}$
$\frac{1}{4}$
Solution:
sin4α+cos4αcot2α=[tex]{\frac{2tan2\alpha}{1+tan^22\alpha}}+{\frac{1-tan^22\alpha}{1+tan^22\alpha}}.{\frac{1}{tan2\alpha}}={\frac{2 \cdot 4}{1+16}}+{\frac{1-16}{1+16}}{\frac{1}{4}}={\frac{1}{4}}[/tex].
Problem 19
Simplify
3+4cos2α+cos4α
$2\cos^4\alpha$
$8\cos^4\alpha$
$4\cos^2\alpha-\cos^4\alpha$
$4\cos^2\alpha$
Solution:
3+4cos2α+cos4α=2+4cos2α+(1+cos4α)=2+4cos2α+2cos
2
2α=2(1+2cos2α+cos
2
2α)=2(1+cos2α)
2
=2(2cos
2
α)
2
=8cos
4
α
Problem 20
Prove the trigonometric identity
[tex]4cos({\frac{\pi}{6}}-\alpha)sin({\frac{\pi}{3}}-\alpha)=({\frac{sin3\alpha}{sin\alpha}})[/tex]
$\frac{\sin3\alpha}{\sin\alpha}$
$\frac{\sin2\alpha}{\sin\alpha}$
$\frac{\sin3\alpha}{\cos\alpha}$
$\sin2\alpha$
Solution:
Simplify the left part
[tex]4sin({\frac{\pi}{3}}-\alpha)cos({\frac{\pi}{6}}-\alpha)=4.{\frac{1}{2}}(sin({\frac{\pi}{3}}-\alpha+{\frac{\pi}{6}}-\alpha)+sin({\frac{\pi}{3}}-\alpha-{\frac{\pi}{6}}+\alpha))=2(sin({\frac{\pi}{2}}-2\alpha)+sin{\frac{\pi}{6}})=2(cos2\alpha+{\frac{1}{2}})={\frac{2sin\alpha(cos2\alpha+{\frac{1}{2}})}{sin\alpha}}={\frac{2sin\alpha cos2\alpha+sin\alpha}{sin\alpha}}={\frac{sin3\alpha-sin\alpha+sin\alpha}{sin\alpha}}={\frac{sin3\alpha}{sin\alpha}}[/tex]
Problem 21
Simplify [tex]{\frac{sin\alpha}{1+cos\alpha}}+{\frac{1+cos\alpha}{sin\alpha}}[/tex]
$\frac{1}{\sin\alpha}$
$\frac{2}{1+\cos\alpha}$
$\frac{2}{\cos\alpha}$
$\frac{2}{\sin\alpha}$
Solution:
[tex]{\frac{sin^2\alpha+(1+cos\alpha)^2}{sin\alpha(1+cos\alpha)}}={\frac{sin^2\alpha+1+2cos\alpha+cos^2\alpha}{sin\alpha(1+cos\alpha)}}={\frac{2(1+cos\alpha)}{sin\alpha(1+cos\alpha)}}={\frac{2}{sin\alpha}}[/tex]
Problem 22
Prove the trigonometric identity: [tex]cos\alpha+cos2\alpha+cos6\alpha+cos7\alpha=4cos\alpha{\frac{\alpha}{2}}cos{\frac{5\alpha}{2}}cos4\alpha[/tex]
Solution:
[tex](cos\alpha+cos7\alpha)+(cos2\alpha+cos6\alpha)=2cos4\alpha cos3\alpha +2cos4\alpha cos2\alpha =2cos4\alpha(cos3\alpha+cos2\alpha)=4cos4\alpha cos{\frac{5\alpha}{2}}cos{\frac{\alpha}{2}}[/tex]
Easy
Normal
Difficult
Submit a problem on this page.
Problem text:
Solution:
Answer:
Your name(if you would like to be published):
E-mail(you will be notified when the problem is published)
Notes
: use [tex][/tex] (as in the forum if you would like to use latex).
Correct:
Wrong:
Unsolved problems:
Feedback
Contact email:
Follow us on
Twitter
Facebook
Author
Copyright © 2005 - 2024.