Solution:
Domain:
$\begin{array}{|l} x+1 \ne 0 \\ \frac{2x+1}{x+1} > 0 \\ \log_2\frac{2x+1}{x+1} > 0\end{array} \Leftrightarrow $
$\begin{array}{|l} x \ne -1 \\ (2x+1)(x+1) > 0 \\ \log_2\frac{2x+1}{x+1} > \log_21\end{array} \Leftrightarrow $
$\begin{array}{|l} x \ne -1 \\ x\in(-\infin,-1)\cup(-\frac12, +\infin) \\ \frac{2x+1}{x+1} > 1\end{array} \Leftrightarrow $
$\begin{array}{|l} x\in(-\infin,-1)\cup(-\frac12, +\infin) \\ \frac{2x+1}{x+1} -1> 0\end{array} \Leftrightarrow $
$\begin{array}{|l} x\in(-\infin,-1)\cup(-\frac12, +\infin) \\ \frac{2x+1-x-1}{x+1}> 0\end{array} \Leftrightarrow $
$\begin{array}{|l} x\in(-\infin,-1)\cup(-\frac12, +\infin) \\ x(x+1)> 0\end{array} \Leftrightarrow $
$\begin{array}{|l} x\in(-\infin,-1)\cup(-\frac12, +\infin) \\ x\in(-\infin, -1)\cup(0,+\infin)\end{array} \Leftrightarrow x\in(-\infin,-1)\cup(0, +\infin)$
$\log_{0.5}\left(\log_2\frac{2x+1}{x+1}\right)>0$
$\log_{0.5}\left(\log_2\frac{2x+1}{x+1}\right)>\log_{0.5}1$
$\log_2\frac{2x+1}{x+1}<1$
$\log_2\frac{2x+1}{x+1}<\log_22$
$\frac{2x+1}{x+1}<2$
$\frac{2x+1}{x+1}-2 < 0$
$\frac{2x+1-2x-2}{x+1} < 0$
$\frac{-1}{x+1} < 0$
$\frac{1}{x+1} > 0$
$x+1 > 0 \Rightarrow x > -1$
Domain: $x\in(-\infin,-1)\cup(0, +\infin)$
Answer: $x\in(0, +\infin)$