Matrices and Determinants

Problem 1
What are the dimensions of the matrix $A$?
$A=\left( \begin{array}{ccccc} 2 & -2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 3 \\ 1 & -1 & 3 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array} \right) $
Problem 2
$A=\left( \begin{array}{ccccc} 2 & -2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 3 \\ 1 & -1 & 3 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1% \end{array}% \right) $

Which is the element $A_{2,4}$?
Problem 3
$A=\left( \begin{array}{ccccc} 2 & -2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 3 \\ 1 & -1 & 3 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1% \end{array}% \right) $

Which is the element $A_{3,2}$?
Problem 4
Write the following system of equations as an augmented matrix.

$\left\{ \begin{array}{c} 3x-2y=3 \\ 5x+y=0 \end{array} \right\} $
Problem 5
What is the sum of the matrices?
$\left( \begin{array}{cc} 2 & -1 \\ 1 & 3 \end{array} \right) +\left( \begin{array}{cc} 1 & 0 \\ 2 & -1 \end{array} \right) =$
Problem 6
Find the matrix $A$, so that the next equality is satisfied.

$A+\left( \begin{array}{cc} 2 & 3 \\ -4 & 1 \end{array} \right) =\left( \begin{array}{cc} 5 & -1 \\ 1 & 3 \end{array} \right) $
Problem 7
What is the result of the multiplication?
$5 \times \left( \begin{array}{c} -2 \\ 3 \\ -4 \end{array} \right) =$
Problem 8
Find the matrix $X$.

$\frac{3}{2}X+\left( \begin{array}{cc} -1 & 3 \\ 2 & -2 \end{array} \right) =\left( \begin{array}{cc} 3 & -4 \\ 5 & 4 \end{array} \right) $
Problem 9
If $A=B\times C$, find the matrix $A$.

$B=\left( \begin{array}{ccc} 1 & -3 & -2 \\ 2 & 0 & 1 \end{array} \right)$      $C=\left( \begin{array}{cc} 2 & 1 \\ -2 & -1 \\ 3 & 0 \end{array} \right)$
Problem 10
Find the determinant of the matrix.
$A=\left( \begin{array}{cc} 2 & -3 \\ 4 & 5 \end{array} \right) $

Problem 11
Find the determinant of the matrix.
$A=\left( \begin{array}{cc} 3 & 4 \\ 0 & 0% \end{array}% \right) $
Problem 12
Find the inverse of matrix $A=\left( \begin{array}{cc} 2 & -3 \\ 4 & 5 \end{array} \right) $
Problem 13
Find the inverse of matrix $A=\left( \begin{array}{cc} 0 & \frac{-3}{4} \\ \frac{7}{3} & 0 \end{array} \right)$
Problem 14
Find the inverse of matrix $A=\left( \begin{array}{cc} 3 & -4 \\ -6 & 8 \end{array} \right)$
Problem 15
$A=\left( \begin{array}{cc} 7 & -4 \\ 4 & -3 \end{array} \right)$ $B=\left( \begin{array}{cc} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & -\frac{7}{5} \end{array} \right) $
Are $A$ and $B$ multiplicative inverse?
Problem 16
$A=\left( \begin{array}{cc} 2 & -3 \\ 1 & -2 \end{array} \right)$   $B=\left( \begin{array}{cc} -2 & 1 \\ -3 & 2% \end{array} \right)$
Are $A$ and $B$ multiplicative inverse?
Problem 17
$A=\left( \begin{array}{cc} 8 & 9 \\ -1 & 2 \end{array} \right)$   $B=\left( \begin{array}{cc} \frac{2}{25} & -\frac{1}{5} \\ \frac{3}{25} & \frac{9}{25} \end{array} \right)$
Are $A$ and $B$ multiplicative inverse?
Problem 18
$A=\left( \begin{array}{cc} 8 & 9 \\ -1 & 2 \end{array} \right)$   $ B=\left( \begin{array}{cc} \frac{2}{25} & -\frac{9}{25} \\ \frac{1}{25} & \frac{8}{25} \end{array} \right)$
Are $A$ and $B$ multiplicative inverse?
Problem 19
What value must $x$ have, so that $B$ is the inverse of $A$?
$A=\left( \begin{array}{cc} 1 & 3 \\ -1 & 2 \end{array}% \right) \qquad B=\left( \begin{array}{cc} \frac{2}{5} & x \\ \frac{1}{5} & \frac{1}{5} \end{array} \right)$
Problem 20
What value must $x$ have, so the matrix $A$ will not have an inverse?

$A=\left( \begin{array}{cc} 2 & 3 \\ x & -2 \end{array} \right) $
Problem 21
What value must $x$ have, so the matrix $A$ will not have an inverse?

$A=\left( \begin{array}{cc} 1 & 2+x \\ x & -1 \end{array} \right)$
Contact email:
Follow us on   Twitter   Facebook

Copyright © 2005 - 2019.