MENU
❌
Home
Math Forum/Help
Problem Solver
Practice
Worksheets
Tests
Algebra
Geometry
College Math
History
Games
MAIN MENU
1 Grade
Adding and subtracting up to 10
Comparing numbers up to 10
Adding and subtracting up to 20
Addition and Subtraction within 20
2 Grade
Adding and Subtracting up to 100
Addition and Subtraction within 20
3 Grade
Addition and Subtraction within 1000
Multiplication up to 5
Multiplication Table
Rounding
Dividing
Perimeter
Addition, Multiplication, Division
4 Grade
Adding and Subtracting
Addition, Multiplication, Division
Equivalent Fractions
Divisibility by 2, 3, 4, 5, 9
Area of Squares and Rectangles
Fractions
Equivalent Fractions
Least Common Multiple
Adding and Subtracting
Fraction Multiplication and Division
Operations
Mixed Numbers
Decimals
Expressions
6 Grade
Percents
Signed Numbers
The Coordinate Plane
Equations
Expressions
Polynomials
Polynomial Vocabulary
Symplifying Expressions
Polynomial Expressions
Factoring
7 Grade
Angles
Inequalities
Linear Functions
8 Grade
Congurence of Triangles
Linear Functions
Systems of equations
Slope
Parametric Linear Equations
Word Problems
Exponents
Roots
Quadratic Equations
Quadratic Inequalities
Rational Inequalities
Vieta's Formulas
Progressions
Arithmetic Progressions
Geometric Progression
Progressions
Number Sequences
Reciprocal Equations
Logarithms
Logarithmic Expressions
Logarithmic Equations
Logarithmic Equations
Logarithmic Inequalities
Irrational Equations
Irrational Inequalities
Trigonometry
Trigonometry
Identities
Trigonometry
Trigonometric Equations
Trigonometric Inequalities
Extremal value problems
Numbers Classification
Geometry
Slope
Intercept Theorem
Law of Sines
Law of Cosines
Vectors
Modulus Inequalities
Exponential Inequalities
Exponential Equations
Modulus equations
Probabilities
Functions
Min, Max Values
Limits
Limits of Functions
Monotonicity of Functions
Properties of Triangles
Pythagorean Theorem
Matrices
Complex Numbers
Inverse Trigonometric Functions
Analytic Geometry
Analytic Geometry
Circle
Parabola
Ellipse
Conic sections
Polar coordinates
Derivatives
Derivatives
Applications of Derivatives
Derivatives
Integrals
Integrals
Integration by Parts
Trigonometric Substitutions
Application
Differential Equations
Home
Practice
Matrices and Determinants
Matrices and Determinants: Problems with Solutions
Matrices
Matrix multiplication
Determinants
Rank of matrices
Inverse matrices
Matrix equations
Systems of equations
Matrix calculators
Problem 1
What are the dimensions of the matrix $A$?
$A=\left[ \begin{array}{ccccc} 2 & -2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 3 \\ 1 & -1 & 3 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array} \right] $
5
$5 \times 4$
$4 \times 5$
20
Solution:
The dimensions of the matrices are $n\times m$, where
$n$ is the number of rows and
$m$ is the number of columns.
In this case, the matrix of the example is $4 \times 5$ because it has $4$ rows and $5$ columns.
Dimension of $A: 4\times 5$
Problem 2
$A=\left[ \begin{array}{ccccc} 2 & -2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 3 \\ 1 & -1 & 3 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1% \end{array}% \right] $
Which is the element $A_{2,4}$?
Solution:
$A_{2,4}$ is the element that is in the second row and the fourth column of $A$
$A_{2,4}=0$.
Problem 3
$A=\left[ \begin{array}{ccccc} 2 & -2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 3 \\ 1 & -1 & 3 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1% \end{array}% \right] $
Which is the element $A_{3,2}$?
Solution:
$A_{3,2}$ is the element that is in the third row and the second column of $A$
$A_{3,2}=-1$.
Problem 4 sent by Oyoo Fredrick Ochieng
Define the term identity matrix (unit matrix).
All elements are ones.
Ones on one of the diagonals and zeros elsewhere.
Ones on the first row and column and zeros elsewhere.
Ones on the main diagonal and zeros elsewhere.
Solution:
Identity matrix (unit matrix) is a square matrix with ones on the main diagonal and zeros elsewhere.
Example:
$\left[ \begin{array}{ccccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] $
Problem 5
Write the following system of equations as an augmented matrix.
$\left\{ \begin{array}{c} 3x-2y=3 \\ 5x+y=0 \end{array} \right\} $
$\left[ \begin{array}{ccc} 3 & -2 \\ 5 & 1 \end{array} \right]$
$\left[ \begin{matrix} 3 & 5 \\ -2 & 1 \\ 3 & 0 \end{matrix} \right]$
$\left[ \begin{array}{ccc} 3 & -2 & 3 \\ 5 & 1 & 0 \end{array} \right]$
$\left[ \begin{array}{ccc} 3 & -2 & 3 \\ 5 & 1 & 3 \end{array} \right]$
Solution:
$\left[ \begin{array}{ccc} 3 & -2 & 3 \\ 5 & 1 & 0 \end{array} \right] $
This matrix represents the coefficients of the variables and the constant terms of the system of equations.
Problem 6
What is the sum of the matrices?
$\left[ \begin{array}{cc} 2 & -1 \\ 1 & 3 \end{array} \right] +\left[ \begin{array}{cc} 1 & 0 \\ 2 & -1 \end{array} \right] =$
$\left[ \begin{array}{cc} 3 & 1 \\ 2 & 2 \end{array} \right]$
$\left[ \begin{array}{cc} 3 & -1 \\ 3 & 2 \end{array} \right]$
$\left[ \begin{array}{cc} 3 & -1 \\ 3 & 4 \end{array} \right]$
$\left[ \begin{array}{cc} 3 & 3 \\ 2 & -1 \end{array} \right]$
Solution:
$\left[ \begin{array}{cc} 2 & -1 \\ 1 & 3 \end{array} \right] +\left[ \begin{array}{cc} 1 & 0 \\ 2 & -1 \end{array} \right] =\left[ \begin{array}{cc} 3 & -1 \\ 3 & 2 \end{array} \right] $
$2+1=3\qquad -1+0=-1\qquad 1+2=3\qquad 3+(-1)=2$
Problem 7
Find the matrix $A$, so that the following equality is satisfied.
$A+\left[ \begin{array}{cc} 2 & 3 \\ -4 & 1 \end{array} \right] =\left[ \begin{array}{cc} 5 & -1 \\ 1 & 5 \end{array} \right] $
$A=\left[ \begin{array}{cc} 5 & 4 \\ 3 & -4 \end{array} \right]$
$A=\left[ \begin{array}{cc} 3 & -4 \\ 5 & 4 \end{array} \right]$
$A=\left[ \begin{array}{cc} -3 & 4 \\ -5 & -2 \end{array} \right]$
$A=\left[ \begin{array}{cc} 7 & 2 \\ -3 & 4 \end{array} \right]$
Solution:
$A$ must be a $2\times2$ dimensional matrix.
$A=\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right] $
$\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right] +\left[ \begin{array}{cc} 2 & 3 \\ -4 & 1 \end{array} \right] = \left[ \begin{array}{cc} 5 & -1 \\ 1 & 3 \end{array} \right] $
$\left[ \begin{array}{cc} a+2 & b+3 \\ c-4 & d+1 \end{array} \right] =\left[ \begin{array}{cc} 5 & -1 \\ 1 & 3 \end{array} \right] $
$a+2=5\Longrightarrow a=3$
$b+3=-1\Longrightarrow b=-4$
$c-4=1\Longrightarrow c=5$
$d+1=5\Longrightarrow d=4$
So, $A=\left[ \begin{array}{cc} 3 & -4 \\ 5 & 4 \end{array} \right]$
Problem 8
What is the result of the multiplication?
$5 \times \left[ \begin{array}{c} -2 \\ 3 \\ -4 \end{array} \right] =$
$\left[ \begin{array}{ccc} -20 & 15 & -10 \end{array} \right]$
$\left[ \begin{array}{c} 10 \\ 15 \\ 20 \end{array} \right]$
$\left[ \begin{array}{c} -20 \\ 15 \\ -10 \end{array} \right]$
$\left[ \begin{array}{c} -10 \\ 15 \\ -20 \end{array} \right]$
Solution:
We must multiply number for each element of the $3\times 1$ matrix.
$5\times \left[ \begin{array}{c} -2 \\ 3 \\ -4 \end{array} \right] =\left[ \begin{array}{c} 5\times (-2) \\ 5\times 3 \\ 5\times (-4) \end{array} \right] =\left[ \begin{array}{c} -10 \\ 15 \\ -20 \end{array} \right]$
Problem 9
Find the matrix $X$.
$\frac{3}{2}X+\left[ \begin{array}{cc} -1 & 3 \\ 2 & -2 \end{array} \right] =\left[ \begin{array}{cc} 3 & -4 \\ 5 & 4 \end{array} \right] $
$X=\left[ \begin{array}{cc} 2 & 4 \\ \frac{8}{3} & -\frac{14}{3} \end{array} \right]$
$X=\left[ \begin{array}{cc} 6 & -\frac{21}{2} \\ \frac{9}{2} & 9 \end{array} \right]$
$X=\left[ \begin{array}{cc} \frac{8}{3} & -\frac{14}{3} \\ 2 & 4 \end{array} \right]$
$X=\left[ \begin{array}{cc} 3 & -\frac{3}{2} \\ \frac{21}{2} & 3 \end{array} \right]$
Solution:
$X$ must be a matrix of $2\times 2$ dimension.
$X=\left[ \begin{array}{cc} a & b c & d \end{array} \right] $
So
$\frac{3}{2}\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right] +\left[ \begin{array}{cc} -1 & 3 \\ 2 & -2 \end{array} \right] =\left[ \begin{array}{cc} 3 & -4 \\ 5 & 4 \end{array} \right] $
$\left[ \begin{array}{cc} \frac{3}{2}a & \frac{3}{2}b \\ \frac{3}{2}c & \frac{3}{2}d \end{array} \right] +\left[ \begin{array}{cc} -1 & 3 \\ 2 & -2 \end{array} \right] =\left[ \begin{array}{cc} 3 & -4 \\ 5 & 4 \end{array} \right]$
$\left[ \begin{array}{cc} \frac{3}{2}a-1 & \frac{3}{2}b+3 \\ \frac{3}{2}c+2 & \frac{3}{2}d-2% \end{array} \right] =\left[ \begin{array}{cc} 3 & -4 \\ 5 & 4 \end{array} \right] $
$\frac{3}{2}a-1=3\Longrightarrow a=\frac{8}{3}$
$\frac{3}{2}b+3=-4\Longrightarrow b=-\frac{14}{3}$
$\frac{3}{2}c+2=5\Longrightarrow c=\frac{6}{3}=2$
$\frac{3}{2}d-2=4\Longrightarrow d=\frac{12}{3}=4$
$X=\left[ \begin{array}{cc} \frac{8}{3} & -\frac{14}{3} \\ 2 & 4 \end{array} \right]$
Problem 10
If $A=B\times C$, find the matrix $A$.
$B=\left[ \begin{array}{ccc} 1 & -3 & -2 \\ 2 & 0 & 1 \end{array} \right]$ $C=\left[ \begin{array}{cc} 2 & 1 \\ -2 & -1 \\ 3 & 0 \end{array} \right]$
$\left[ \begin{array}{cc} 4 & 1 \\ 0 & 3 \\ 3 & 0 \end{array} \right]$
$\left[ \begin{array}{ccc} 2 & 6 & -6 \\ 2 & 0 & 0 \end{array} \right]$
$\left[ \begin{array}{cc} 7 & 2 \\ 2 & 4 \end{array} \right]$
$\left[ \begin{array}{cc} 2 & 4 \\ 7 & 2 \end{array} \right]$
Solution:
First, we need to find the dimension of $A$.
$A_{m \times n}=B_{2\times3} \cdot C_{3\times2}$ So
$m \times n=(2\times 3)\cdot (3 \times 2)$
$m\times n=2\times 2$
$A=\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right] $
Then, we need to do the multiplication of $B\times C$ matrices.
$B\times C=\left[ \begin{array}{ccc} 1 & -3 & -2 \\ 2 & 0 & 1 \end{array} \right] \times \left[ \begin{array}{cc} 2 & 1 \\ -2 & -1 \\ 3 & 0 \end{array} \right] =\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right] $ where
$a=1\times 2+(-3)\times (-2)+(-2)\times 3=2+6-6=2$
$b=1\times 1+(-3)\times (-1)+(-2)\times 0=1+3+0=4$
$c=2\times 2+0\times (-2)+1\times 3=4+0+3=7$
$d=2\times 1+0 \times (-1)+1 \times 0=2+0+0=2$
So
$A=\left[ \begin{array}{cc} 2 & 4 \\ 7 & 2 \end{array} \right]$
Problem 11
Find the determinant of the matrix.
$A=\left[ \begin{array}{cc} 2 & -3 \\ 4 & 5 \end{array} \right] $
Solution:
The determinant of the matrix $A=\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right] $ is $\det A=ad-bc$
$\det A=2\times 5-(-3)\times 4=10+12=22$
Problem 12
Find the determinant of the matrix.
$A=\left[ \begin{array}{cc} 3 & 4 \\ 0 & 0 \end{array} \right] $
Solution:
The determinant of the matrix $A=\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right]$ is $\det A=ad-bc$
$\det A=3\times 0-(4)\times 0=0-0=0$
Problem 13
Find the inverse of the matrix $A=\left[ \begin{array}{cc} 2 & -3 \\ 4 & 5 \end{array} \right] $
$\left[\begin{matrix}110 & 66\\-88 & 44\end{matrix} \right]$
$\left[\begin{matrix}5 & 3\\ -4 & 2\end{matrix} \right]$
$\frac{1}{22}$
$\left[\begin{matrix}\frac{5}{22} & \frac{3}{22}\\\frac{-2}{11} & \frac{1}{11}\end{matrix} \right]$
Solution:
We use the formula for the inverse of a $2\times 2$ matrix.
$A=\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right] $ $\Longrightarrow A^{-1}=\frac{1}{\det A}\left[ \begin{array}{cc} d & -b \\ -c & a \end{array} \right] $ where $\det A\neq 0$
If $\det A=0$, we say that the inverse of A does not exist.
But $\det A=ad-bc=2x5-(-3)x4=10+12=22\neq 0$
So $A^{-1}=\frac{1}{\det A}\left[ \begin{array}{cc} d & -b \\ -c & a \end{array} \right] $ $=\frac{1}{22}\left[ \begin{array}{cc} 5 & 3 \\ -4 & 2 \end{array} \right] = \left[ \begin{array}{cc} \frac{5}{22} & \frac{3}{22} \\ \frac{-2}{11} & \frac{1}{11} \end{array} \right]$
$A^{-1}=\left[ \begin{array}{cc} \frac{5}{22} & \frac{3}{22} \\ \frac{-2}{11} & \frac{1}{11} \end{array} \right]$
Problem 14
Find the inverse of the matrix $A=\left[ \begin{array}{cc} 0 & \frac{-3}{4} \\ \frac{7}{3} & 0 \end{array} \right]$
$A^{-1}=\left[\begin{array}{cc} 0 & \frac{3}{7} \\ -\frac{4}{3} & 0 \end{array}\right]$
$A^{-1}=\left[\begin{array}{cc} \frac{3}{7} & 0 \\ 0 & -\frac{4}{3} \end{array}\right]$
$A^{-1}=\left[\begin{array}{cc} 0 & \frac{3}{4} \\ -\frac{7}{3} & 0 \end{array}\right]$
The inverse of A does not exist.
Solution:
We use the formula for the inverse of a $2\times 2$ matrix.
$A=\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right] \Longrightarrow A^{-1}=\frac{1}{\det A}\left[ \begin{array}{cc} d & -b \\ -c & a \end{array} \right]$ where $\det A\neq 0$
If $\det A=0$, we say that the inverse of A does not exist.
But $\det A=ad-bc=0\times 0-(\frac{-3}{4}) \times \frac{7}{3}=0+\frac{7}{4}=\frac{7}{4}\neq 0$
So $A^{-1}=\frac{1}{\det A}\left[ \begin{array}{cc} d & -b \\ -c & a \end{array} \right] =\frac{1}{\frac{7}{4}}\left[ \begin{array}{cc} 0 & \frac{3}{4} \\ -\frac{7}{3} & 0 \end{array} \right]=\frac{4}{7}\left[ \begin{array}{cc} 0 & \frac{3}{4} \\ -\frac{7}{3} & 0 \end{array} \right] =\left[ \begin{array}{cc} 0 & \frac{3}{7} \\ -\frac{4}{3} & 0 \end{array} \right] $
$A^{-1}=\left[ \begin{array}{cc} 0 & \frac{3}{7} \\ -\frac{4}{3} & 0 \end{array} \right] $
Problem 15
Find the inverse of the matrix $A=\left[ \begin{array}{cc} 3 & -4 \\ -6 & 8 \end{array} \right]$
$A^{-1}=\left[\begin{array}{cc} 8 & 6 \\ 3 & 4 \end{array}\right]$
$A^{-1}=\left[\begin{array}{cc} 23 & \frac{2}{3} \\ 6 & -4 \end{array}\right]$
$A^{-1}=\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$
The inverse of A does not exist.
Solution:
We use the formula for the inverse of a $2 \times 2$ matrix.
$A=\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right] \Longrightarrow A^{-1}=\frac{1}{\det A}\left[ \begin{array}{cc} d & -b \\ -c & a \end{array} \right]$ where $\det A \neq 0$
If $\det A=0$, we say that the inverse of A does not exist.
But $\det A=ad-bc=3 \times 8-(-4) \times (-6)=24-24=0$
So, the inverse of A does not exist.
Problem 16
$A=\left[ \begin{array}{cc} 7 & -4 \\ 4 & -3 \end{array} \right]$ $B=\left[ \begin{array}{cc} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & -\frac{7}{5} \end{array} \right] $
Are $A$ and $B$ multiplicative inverse (can we write that $A \cdot B = B \cdot A$)?
Yes
No
Solution:
$A \cdot B=\left[ \begin{array}{cc} 7 & -4 \\ 4 & -3 \end{array} \right] \cdot \left[ \begin{array}{cc} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & -\frac{7}{5} \end{array} \right] =\left[ \begin{array}{cc} 7x\frac{3}{5}-4x\frac{4}{5} & 7x(-\frac{4}{5})-4x(-\frac{7}{5}) \\ 4x\frac{3}{5}-3x\frac{4}{5} & 4x(-\frac{4}{5})-3x(-\frac{7}{5}) \end{array} \right]$
$A \cdot B=\left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$ similarly we calculate:
$B \cdot A=\left[ \begin{array}{cc} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & -\frac{7}{5} \end{array} \right] \left[ \begin{array}{cc} 7 & -4 \\ 4 & -3 \end{array} \right] =\left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$
So, $A$ and $B$ are multiplicative inverse.
Problem 17
$A=\left[ \begin{array}{cc} 2 & -3 \\ 1 & -2 \end{array} \right]$ $B=\left[ \begin{array}{cc} -2 & 1 \\ -3 & 2% \end{array} \right]$
Are $A$ and $B$ multiplicative inverse (Can we write that $A \cdot B = B \cdot A$)?
Yes
No
Solution:
$A \cdot B=\left[ \begin{array}{cc} 2 & -3 \\ 1 & -2 \end{array} \right] \left[ \begin{array}{cc} -2 & 1 \\ -3 & 2 \end{array} \right] = \left[ \begin{array}{cc} 5 & -4 \\ 4 & -3 \end{array} \right] \neq \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$
Answer: $A \cdot B \ne B \cdot A$
Problem 18
$A=\left[ \begin{array}{cc} 8 & 9 \\ -1 & 2 \end{array} \right]$ $B=\left[ \begin{array}{cc} \frac{2}{25} & -\frac{1}{5} \\ \frac{3}{25} & \frac{9}{25} \end{array} \right]$
Are $A$ and $B$ multiplicative inverse?
Yes
No
Solution:
$\left[ \begin{array}{cc} 8 & 9 \\ -1 & 2 \end{array} \right] \left[ \begin{array}{cc} \frac{2}{25} & -\frac{1}{5} \\ \frac{3}{25} & \frac{9}{25} \end{array} \right] = \left[ \begin{array}{cc} \frac{43}{25} & \frac{41}{25} \\ \frac{4}{25} & \frac{23}{25} \end{array} \right] \neq \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$
Problem 19
$A=\left[ \begin{array}{cc} 8 & 9 \\ -1 & 2 \end{array} \right]$ $ B=\left[ \begin{array}{cc} \frac{2}{25} & -\frac{9}{25} \\ \frac{1}{25} & \frac{8}{25} \end{array} \right]$
Are $A$ and $B$ multiplicative inverse?
Yes
No
Solution:
$A \cdot B=\left[ \begin{array}{cc} 8 & 9 \\ -1 & 2 \end{array} \right] \left[ \begin{array}{cc} \frac{2}{25} & -\frac{9}{25} \\ \frac{1}{25} & \frac{8}{25} \end{array} \right] = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] $
$B \cdot A=\left[ \begin{array}{cc} \frac{2}{25} & -\frac{9}{25} \\ \frac{1}{25} & \frac{8}{25} \end{array} \right] \left[ \begin{array}{cc} 8 & 9 \\ -1 & 2 \end{array} \right] = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$
Problem 20
What value must $x$ have, so that $B$ is the inverse of $A$?
$A=\left[ \begin{array}{cc} 1 & 3 \\ -1 & 2 \end{array}% \right] \qquad B=\left[ \begin{array}{cc} \frac{2}{5} & x \\ \frac{1}{5} & \frac{1}{5} \end{array} \right]$
Solution:
If $B=A^{-1}$, then $A\cdot B= B \cdot A=I$
$\left[ \begin{array}{cc} 1 & 3 \\ -1 & 2 \end{array} \right] \left[ \begin{array}{cc} \frac{2}{5} & x \\ \frac{1}{5} & \frac{1}{5} \end{array} \right] =\left[ \begin{array}{cc} \frac{2}{5}+\frac{3}{5} & x+\frac{3}{5} \\ -\frac{2}{5}+\frac{2}{5} & -x+\frac{2}{5} \end{array} \right] =\left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$
$\left\{ \begin{array}{c} x+\frac{3}{5}=0 \\ -x+\frac{2}{5}=1 \end{array} \right\} \Longrightarrow x=-\frac{3}{5}$
Problem 21
What is the value of $x$, so the matrix $A$ does not have an inverse?
$A=\left[ \begin{array}{cc} 2 & 3 \\ x & -2 \end{array} \right] $
$\frac{4}{3}$
$-\frac{3}{4}$
$-\frac{4}{3}$
$\frac{3}{4}$
Solution:
In order a matrix to have no inverse its determinant must be 0. So we have to solve the equation $\det A=0$.
$\det A=2x(-2)-3x=0$ $\Longrightarrow 3x=-4\Longrightarrow x=-\frac{4}{3}$
Problem 22
What value must $x$ have, so the matrix $A$ does not have an inverse?
$A=\left[ \begin{array}{cc} 1 & 2+x \\ x & -1 \end{array} \right]$
Solution:
If we want the matrix $A$ to have no inverse, we must solve $\det A=0$. So,
$\det A=-1-(2+x)x=-1-2x-x^{2}=0$
$x^{2}+2x+1=0\Longrightarrow \left( x+1\right)^{2}=0\Longrightarrow x=-1$
Submit a problem on this page.
Problem text:
Solution:
Answer:
Your name(if you would like to be published):
E-mail(you will be notified when the problem is published)
Notes
: use [tex][/tex] (as in the forum if you would like to use latex).
Correct:
Wrong:
Unsolved problems:
Feedback
Contact email:
Follow us on
Twitter
Facebook
Author
Copyright © 2005 - 2023.