MENU
❌
Home
Math Forum/Help
Problem Solver
Practice
Worksheets
Tests
Algebra
Geometry
College Math
History
Games
MAIN MENU
1 Grade
Adding and subtracting up to 10
Comparing numbers up to 10
Adding and subtracting up to 20
Addition and Subtraction within 20
2 Grade
Adding and Subtracting up to 100
Addition and Subtraction within 20
3 Grade
Addition and Subtraction within 1000
Multiplication up to 5
Multiplication Table
Rounding
Dividing
Perimeter
Addition, Multiplication, Division
4 Grade
Adding and Subtracting
Addition, Multiplication, Division
Equivalent Fractions
Divisibility by 2, 3, 4, 5, 9
Area of Squares and Rectangles
Fractions
Equivalent Fractions
Least Common Multiple
Adding and Subtracting
Fraction Multiplication and Division
Operations
Mixed Numbers
Decimals
Expressions
6 Grade
Percents
Signed Numbers
The Coordinate Plane
Equations
Expressions
Polynomials
Polynomial Vocabulary
Symplifying Expressions
Polynomial Expressions
Factoring
7 Grade
Angles
Inequalities
Linear Functions
8 Grade
Congurence of Triangles
Linear Functions
Systems of equations
Slope
Parametric Linear Equations
Word Problems
Exponents
Roots
Quadratic Equations
Quadratic Inequalities
Rational Inequalities
Vieta's Formulas
Progressions
Arithmetic Progressions
Geometric Progression
Progressions
Number Sequences
Reciprocal Equations
Logarithms
Logarithmic Expressions
Logarithmic Equations
Logarithmic Equations
Logarithmic Inequalities
Irrational Equations
Irrational Inequalities
Trigonometry
Trigonometry
Identities
Trigonometry
Trigonometric Equations
Trigonometric Inequalities
Extremal value problems
Numbers Classification
Geometry
Intercept Theorem
Slope
Law of Sines
Law of Cosines
Vectors
Modulus Inequalities
Exponential Inequalities
Exponential Equations
Modulus equations
Probabilities
Functions
Min, Max Values
Limits
Limits of Functions
Monotonicity of Functions
Properties of Triangles
Pythagorean Theorem
Matrices
Complex Numbers
Inverse Trigonometric Functions
Analytic Geometry
Analytic Geometry
Circle
Parabola
Ellipse
Conic sections
Polar coordinates
Derivatives
Derivatives
Applications of Derivatives
Derivatives
Integrals
Integrals
Integration by Parts
Trigonometric Substitutions
Application
Differential Equations
Home
Practice
Operations with Fractions
Easy
Normal
Difficult
Operations with Fractions: Problems with Solutions
Problem 1
Calculate [tex]\frac{1}{2}+\frac{1}{3}[/tex].
$\frac{2}{5}$
$\frac{2}{3}$
$\frac{5}{6}$
$\frac{7}{6}$
Solution:
The lowest common denominator is the least common multiple of 2 and 3, which is 6. We expand both fractions: [tex]\frac{1}{2}+\frac{1}{3}=\frac{3}{3\times 2}+\frac{2}{2 \times 3}=\frac{3}{6}+\frac{2}{6}=\frac{5}{6}[/tex].
Problem 2
Calculate [tex]\frac{3}{2}+\frac{1}{2}[/tex]
Solution:
Both fractions already have the same denominator, so we add the numerators: [tex]\frac{3}{2}+\frac{1}{2}=\frac{3+1}{2}=\frac{4}{2}=2[/tex]
Problem 3
Calculate [tex]\frac{4}{21}+\frac{1}{7}[/tex].
$\frac{2}{3}$
$\frac{1}{3}$
$\frac{6}{21}$
$\frac{48}{147}$
Solution:
Since [tex]21=7\times 3[/tex], the lowest common denominator of these fractions is 21. We expand one of them: [tex]\frac{4}{21}+\frac{1}{7}=\frac{4}{21}+\frac{3}{21}=\frac{4+3}{21}=\frac{7}{21}=\frac{1}{3}[/tex]
Problem 4
Calculate [tex]\frac{4}{8}+\frac{5}{2}[/tex]
Solution:
We should first reduce both fractions. The second one already is, but the first is not. We have [tex]\frac{4}{8}+\frac{5}{2}=\frac{1}{2}+\frac{5}{2}=\frac{6}{2}=3[/tex]
Problem 5
Calculate [tex]\frac{3}{8}-\frac{1}{4}[/tex]
$\frac{2}{4}$
$\frac{5}{8}$
$\frac{3}{4}$
$\frac{1}{8}$
Solution:
The least common multiple of 8 and 4 is 8, since [tex]8=2\times 4[/tex]. Then [tex]\frac{3}{8}-\frac{1}{4}=\frac{3}{8}-\frac{2}{2 \cdot 4}=\frac{3}{8}-\frac{2}{8}=\frac{1}{8}[/tex]
Problem 6
Calculate [tex]\frac{3}{10}+\frac{2}{5}[/tex]
$\frac{7}{10}$
$\frac{5}{15}$
$\frac{5}{10}$
$\frac{34}{50}$
Solution:
[tex]\frac{3}{10}+\frac{2}{5}=\frac{3}{10}+\frac{2 \times 2}{5\times2}=\frac{3}{10}+\frac{4}{10}=\frac{7}{10}[/tex]
Problem 7
Calculate [tex]\frac{8}{7}-\frac{2}{14}[/tex]
Solution:
We must first ensure that both fractions are irreducible. [tex]\frac{8}{7}-\frac{2}{14}=\frac{8}{7}-\frac{1}{7}=\frac{8-1}{7}=\frac{7}{7}=1[/tex]
Problem 8
Calculate [tex]\frac{1}{2}-\frac{5}{17}[/tex]
$\frac{7}{34}$
$\frac{7}{17}$
$\frac{5}{34}$
$\frac{6}{34}$
Solution:
[tex]\frac{1}{2}-\frac{5}{17}=\frac{17}{2 \times 17}-\frac{2\times 5}{2 \times 17}=\frac{17-10}{34}=\frac{7}{34}[/tex]
Problem 9
Determine the value of the fraction sum [tex]\frac{5}{11}+\frac{13}{22}[/tex]
$\frac{18}{33}$
$\frac{18}{22}$
$2\frac{1}{22}$
$\frac{23}{22}$
Solution:
[tex]\frac{5}{11}+\frac{13}{22}=\frac{5\times 2}{11\times 2}+\frac{13}{22}=\frac{10}{22}+\frac{13}{22}=\frac{23}{22}[/tex]
Problem 10
Calculate [tex]\frac{1}{3}-\frac{1}{2}+\frac{1}{6}[/tex]
Solution:
The lowest common multiple of 2, 3, 6 is 6. So we have [tex]\frac{2}{2\cdot3}-\frac{3}{3\cdot 2}+\frac{1}{6}=\frac{2-3+1}{6}=\frac{0}{6}=0[/tex]
Problem 11
Calculate [tex]\frac{5}{12}-\frac{1}{3}[/tex]
$\frac{4}{9}$
$\frac{1}{12}$
$\frac{9}{12}$
$\frac{2}{12}$
Solution:
[tex]\frac{5}{12}-\frac{1}{3}=\frac{5}{12}-\frac{4}{3.4}=\frac{5-4}{12}=\frac{1}{12}[/tex]
Problem 12
Calculate [tex]\frac{5}{3}\cdot \frac{15}{10}[/tex]
$\frac{75}{35}$
$\frac{25}{2}$
$\frac{5}{2}$
$\frac{25}{10}$
Solution:
[tex]\frac{5}{3}\cdot \frac{15}{10}=\frac{5\cdot 15}{3\cdot 10}=\frac{5\cdot 3\cdot 5}{3\cdot 2\cdot 5}=\frac{5}{2}[/tex]
Problem 13
Determine the value of [tex]\frac{5}{18} \cdot \frac{2}{15}[/tex]
$\frac{1}{27}$
$\frac{1}{18}$
$\frac{1}{9}$
$\frac{2}{27}$
Solution:
[tex]\frac{5}{18} \cdot \frac{2}{15}=\frac{5}{2 \cdot 9} \cdot \frac{2}{3 \cdot 5}=\frac{2 \cdot 5}{2 \cdot 3 \cdot 5 \cdot 9}=\frac{1}{27}[/tex]
Problem 14
Determine the value of [tex]\frac{27}{31}-\frac{54}{62}[/tex]
Solution:
Both fractions should be reduced before performing arithmetic operations. We get [tex]\frac{27}{31}-\frac{2 \cdot 27}{2 \cdot 31}=\frac{27}{31}-\frac{27}{31}=0[/tex]
Problem 15
Evaluate [tex]\frac{1}{2}:\frac{1}{2}[/tex]
Solution:
We can substitute division by a certian fraction with multiplication by its reciprocal: [tex]\frac{1}{2}:\frac{1}{2}=\frac{1}{2}.\frac{2}{1}=1[/tex]
Easy
Normal
Difficult
Submit a problem on this page.
Problem text:
Solution:
Answer:
Your name(if you would like to be published):
E-mail(you will be notified when the problem is published)
Notes
: use [tex][/tex] (as in the forum if you would like to use latex).
Correct:
Wrong:
Unsolved problems:
Feedback
Contact email:
Follow us on
Twitter
Facebook
Author
Copyright © 2005 - 2024.