MENU
❌
Home
Math Forum/Help
Problem Solver
Practice
Algebra
Geometry
Tests
College Math
History
Games
MAIN MENU
1 Grade
Adding and subtracting up to 10
Comparing numbers up to 10
Adding and subtracting up to 20
Addition and Subtraction within 20
2 Grade
Adding and Subtracting up to 100
Addition and Subtraction within 20
3 Grade
Addition and Subtraction within 1000
Multiplication up to 5
Multiplication Table
Rounding
Dividing
Perimeter
Addition, Multiplication, Division
4 Grade
Adding and Subtracting
Addition, Multiplication, Division
Equivalent Fractions
Divisibility by 2, 3, 4, 5, 9
Area of Squares and Rectangles
Fractions
Equivalent Fractions
Least Common Multiple
Adding and Subtracting
Fraction Multiplication and Division
Operations
Mixed Numbers
Decimals
Expressions
6 Grade
Percents
Signed Numbers
The Coordinate Plane
Equations
Expressions
Polynomials
Polynomial Vocabulary
Symplifying Expressions
Polynomial Expressions
Factoring
7 Grade
Angles
Inequalities
Linear Functions
8 Grade
Congurence of Triangles
Linear Functions
Systems of equations
Slope
Parametric Linear Equations
Word Problems
Exponents
Roots
Quadratic Equations
Quadratic Inequalities
Rational Inequalities
Vieta's Formulas
Progressions
Arithmetic Progressions
Geometric Progression
Progressions
Number Sequences
Reciprocal Equations
Logarithms
Logarithmic Expressions
Logarithmic Equations
Trigonometry
Trigonometry
Identities
Trigonometry
Trigonometric Inequalities
Extremal value problems
Numbers Classification
Geometry
Intercept Theorem
Slope
Law of Sines
Law of Cosines
Vectors
Probability
Limits of Functions
Properties of Triangles
Pythagorean Theorem
Matrices
Complex Numbers
Inverse Trigonometric Functions
Analytic Geometry
Analytic Geometry
Circle
Parabola
Ellipse
Conic sections
Polar coordinates
Integrals
Integrals
Integration by Parts
Trigonometric Substitutions
Differential Equations
Home
Practice
Polar Coordinates and Equations in Polar Form
Polar Coordinates and Equations in Polar Form: Problems with Solutions
Problem 1
Convert $(0,\frac{\pi}{2})$ from polar to Cartesian coordinates.
$(0,\frac{\pi}{2})\equiv (0,1)$
$(0,\frac{\pi}{2})\equiv (1,0)$
$(0,\frac{\pi}{2})\equiv (1,\sqrt{2})$
$(0,\frac{\pi}{2})\equiv (0,0)$
Solution:
We use the transformation equations
$x=r\cos\theta$
$y=r\sin \theta $
where $r=0$ $\theta =\frac{\pi}{2}$
$x=0\cdot \cos(\frac{\pi}{2})=0$
$y=0\cdot \sin (\frac{\pi}{2})=0$
So $(0,\frac{\pi}{2})$ is equivalent to $(0,0)$ in Cartesian Coordinates.
Problem 2
Convert $(-\sqrt{2},\frac{\pi}{4})$ from polar to Cartesian coordinates.
$(-\sqrt{2},\frac{\pi}{4})\equiv (0,-\frac{1}{4})$
$(-\sqrt{2},\frac{\pi}{4})\equiv (-1,-1)$
$(-\sqrt{2},\frac{\pi}{4})\equiv (1,-1)$
$(-\sqrt{2},\frac{\pi}{4})\equiv (1,1)$
Solution:
Answer: $(-\sqrt{2},\frac{\pi}{4})\equiv (-1,-1)$
We use the transformation equations
$x=r\cos\theta$
$y=r\sin\theta $ where $r=-\sqrt{2}\qquad \theta =\pi /4$
$x=-\sqrt{2}\cdot \cos(\pi /4)=-\sqrt{2}.\frac{\sqrt{2}}{2}=-1$
$y=-\sqrt{2}\cdot \sin (\pi /4)=-\sqrt{2}.\frac{\sqrt{2}}{2}=-1$
The point in Cartesian coordinates is $(-1,-1)$.
Problem 3
Convert the equation $y=10$ to polar form.
$r=10\sin\theta$
$r=\tan \frac{10}{\pi }$
$r=\frac{10}{\sin\theta}$
$r=10\tan \frac{10}{\pi }$
Solution:
$y=10\Longrightarrow y=r\sin\theta =10\Longrightarrow r=\frac{10}{\sin\theta }=10\csc \theta $
Problem 4
Convert the equation $x^{2}-y^{2}=4$ to polar form.
$r^{2}\left( \cos \theta \right) =4$
$r\left( \cos 2\theta \right) =4$
$r\left( \cos 2\theta \right) =-4$
$r^{2}\left( \cos 2\theta \right) =4$
Solution:
Answer: $r^{2}\left( \cos 2\theta \right) =4$
We use the transformation equations
$x=rcos\theta \qquad y=rsin\theta$
$x^{2}-y^{2}=4\Longrightarrow \left( rcos\theta \right)^{2}-\left(rsin\theta \right) ^{2}=4\Longrightarrow r^{2}\left( \cos ^{2}\theta -\sin^{2}\theta \right) =4$
$r^{2}\left( \cos 2\theta \right) =4$
This is a hyperbola equation, and here is its graph.
Problem 5
Convert the equation $y^{2}=4x$ to polar form.
$r=4\sin \theta \cos \theta $
$r=4\cot \theta $
$r=4\frac{\cos \theta }{sin^{2}\theta }$
$r=\cot 4\theta \cos 4\theta $
Solution:
We use the transformation equations
$x=r\cos\theta \qquad y=r\sin\theta $
$y^{2}=4x$ $\Longrightarrow \left( r\sin\theta \right) ^{2}=4r\cos\theta \Longrightarrow r^{2}\sin^{2}\theta =4r\cos\theta \Longrightarrow r=4\frac{\cos \theta }{sin^{2}\theta }$
This is the equation of a parabola.
Problem 6
How do we represent the orange ray in polar coordinates?
$\theta =2\frac{\pi }{3};r\leq -2$
$\theta =2\frac{\pi }{3};2\leq r<\infty $
$\theta =2\frac{\pi }{3};0\leq r\leq -2$
$\theta =2\frac{\pi }{3};r\geq -2$
Solution:
$\theta =2\frac{\pi }{3};r\leq -2$
This is the graph of a ray that makes an angle of $2\frac{\pi}{3}$ with the positive $x-axis$, but goes in the opposite direction starting at $-2.$
Problem 7
Calculate the equation in polar coordinates of this semicircle.
$-\pi \leq \theta \leq 2\pi \qquad r=-1$
$0\leq \theta \leq \pi \qquad r=1$
$-\pi \leq \theta \leq 2\pi \qquad r=1$
$0\leq \theta \leq \pi \qquad r=-1$
Solution:
Answer: $0\leq \theta \leq \pi \qquad r=-1$
This is half a circle that starts at $\pi$ and goes to $2\pi $. I know that the interval starts at $0$, but $r$ is negative.
Problem 8
What is the equation in polar coordinates of the blue region?
$\frac{3\pi }{4}\leq \theta \leq \frac{5\pi }{4}\qquad 0\leq r\leq 1$
$-\frac{\pi }{4}\leq \theta \leq \frac{5\pi }{4}\qquad 0\leq r\leq 1$
$-\frac{\pi }{4}\leq \theta \leq \frac{3\pi }{4}\qquad -1\leq r\leq 1$
$-\frac{\pi }{4}\leq \theta \leq \frac{\pi }{4}\qquad -1\leq r\leq 1$
Solution:
Answer: $-\frac{\pi }{4}\leq \theta \leq \frac{\pi }{4}\qquad -1\leq r\leq 1$
The graph of this set of inequalities is two wedges cut out of the circle with radius of $-1$ and $1$, and all points in blue that are between those two values by the lines $\pm \frac{\pi }{4}$.
Problem 9
Convert the polar equation $r\sin\theta =4$ to rectangular equation.
$y=4x$
$y=4$
$y=4x+1$
$y=4x-1$
Solution:
Answer: $y=4$
$r\sin\theta =4\Longrightarrow y=4$
Since $y=r\sin \theta $ is the transformation equation.
This is an equation of a horizontal line through point $(0,4)$.
Problem 10
Convert the polar equation $r\sin\theta =r\cos\theta +4$ to rectangular equation.
$y=4x$
$y=x+4$
$y+x=4$
$y=4x+r$
Solution:
Answer: $y=x+4$
We use the transformation equations
$x=r\cos\theta \qquad y=r\sin\theta$
So $r\sin\theta =r\cos\theta +4\Longrightarrow y=x+4$
This is a straight line with slope $1$ and $y$-intercept at $(0,4)$
Problem 11
The points of intersection of the graphs of the functions $r=\sin \theta $ and $r=\sin 2\theta $ are:
$\left( \sqrt{3},3\pi \right) ,\left( -\sqrt{3},5\pi \right) $
$\left(\frac{\sqrt{3}}{2},\frac{1}{3}\pi \right) ,\left( -\frac{\sqrt{3}}{2},\frac{5}{3}\pi \right)$
$\left(-\frac{\sqrt{3}}{2},\frac{1}{3}\pi \right),\left(\frac{\sqrt{3}}{2},\frac{5}{3}\pi \right)$
$\left(\frac{\sqrt{3}}{2},-\frac{1}{3}\pi \right),\left(-\frac{\sqrt{3}}{2},-\frac{5}{3}\pi \right)$
Solution:
We match both equations
$r=\sin \theta $ and $r=\sin 2\theta $
then $\sin \theta =\sin 2\theta =2\sin \theta \cos \theta \Longrightarrow 2\cos \theta =1\Longrightarrow \cos \theta =\frac{1}{2}$
So, $\theta =\arccos \frac{1}{2}= \frac{1}{3}\pi ,\frac{5}{3}\pi $
when $\theta =\frac{1}{3}\pi \Longrightarrow $ $r=\sin \left( \frac{1}{3}\pi \right) =\frac{\sqrt{3}}{2}$ and $r=\sin \left( \frac{2}{3}\pi \right) =\frac{\sqrt{3}}{2}$
and when $\theta =\frac{5}{3}\pi \Longrightarrow r=\sin \left( \frac{5}{3}\pi \right) =-\frac{\sqrt{3}}{2}$ and $r=\sin \left( \frac{10}{3}\pi \right) = -\frac{\sqrt{3}}{2}$
The points of intersection are $\left( \frac{\sqrt{3}}{2},\frac{1}{3}\pi \right) ,\left( -\frac{\sqrt{3}}{2},\frac{5}{3}\pi \right) $
Problem 12
The following equations represent $r=\frac{2}{1-2\sin \theta },r=\frac{3}{4+\cos \theta }$
parabola, ellipse
hyperbola, parabola
hyperbola, ellipse
parabola, circle
Solution:
Answer: Hyperbola, ellipse.
$r=\frac{2}{1-2\sin \theta }$
If we compare each of the terms in the given equation in polar form $r=\frac{ep}{1-e\sin\theta }$
we can see that $e=2$.
Therefore, the conic section is a hyperbola.
$r=\frac{3}{4+\cos \theta }=\frac{3/4}{1+1/4\cos \theta }$
and we compare with $r=\frac{ep}{1+e\sin\theta }$ then $e=\frac{1}{4}$
So, the conic section is an ellipse.
Problem 13
Identify the conic section represented by the equation
$r=\frac{4}{3-2\sin\theta}$
Parabola
Hyperbola
Circle
Ellipse
Solution:
$r=\frac{4}{3-2\sin \theta }=\frac{4/3}{1-2/3\sin \theta }$
We see that $e=\frac{2}{3}$ then
The equation $r=\frac{4}{3-2\sin \theta}$ represents an ellipse.
Problem 14
Identify the conic section represented by the equation
$r=\frac{1}{1-\cos\theta }$
Parabola
Hyperbola
Circle
Ellipse
Solution:
The conic section represents a parabola which axis is horizontal, since $r$ is not defined when $\theta=0$
The vertex of the parabola is $\theta =\pi $
Vertex: $(\frac{1}{2},\pi )$
$y-axis$ intersection: $(1,\frac{\pi }{2});$ $(1,\frac{3\pi }{2})$
Problem 15
Identify the conic section represented by the equation
$r=\frac{2}{1+2\cos\theta }$
Parabola
Hyperbola
Circle
Ellipse
Solution:
We see that $e=2$.
So the equation $r=\frac{2}{1+2\cos \theta }$ represents a hyperbola,
which axis is horizontal, along the x-axis. The vertices, which are the edges of the transverse axis of the hyperbola, are $\theta =0$ and $\theta =\pi $
Vertices: $(\frac{2}{3},0);\ \ (-2,\pi )$
$y-axis$ intersection at: $(2,\frac{\pi }{2});\ \ (2,\frac{3\pi }{2})$
Submit a problem on this page.
Problem text:
Solution:
Answer:
Your name(if you would like to be published):
E-mail(you will be notified when the problem is published)
Notes
: use [tex][/tex] (as in the forum if you would like to use latex).
Correct:
Wrong:
Unsolved problems:
Contact email:
Follow us on
Twitter
Facebook
Author
Copyright © 2005 - 2021.