Solution:Answer: Hyperbola
$\cot 2\theta =\frac{A-C}{B}=\frac{1+2}{-4}=\frac{3}{4}$ then $0^{\circ }<\theta <45^{\circ }$
$2\theta =\text{arccot}\frac{3}{4}=0.927\,\cdot \frac{180}{\pi }=53.\,11\Longrightarrow \theta =\frac{53.\,11}{2}\approx 27^{\circ }$
$\cos 27^{\circ }=0.891\,\qquad \sin 27^{\circ }=0.454$ then
$x=x' \cos \theta -y' \sin \theta =0.891\,x'-0.454y' $
$y=x' \sin \theta +y' \cos \theta =0.454x' + 0.891\,\,y' $
$x^{2}+4xy-2y^{2}-6=0\Longrightarrow $
$\left( 0.891\,x' -0.454y' \right) ^{2}+4\left( 0.891\,x'
-0.454y' \right) \left( 0.454x' +0.891\,\,y'
\right) -2\left( 0.454x' +0.891\,\,y' \right) ^{2}-6=0$
$\left( 0.891x' \right)^{2}-2\left( \left( 0.891\right) \left(
0.454\right)x' y' \right) +\left( 0.454y' \right)^{2}+4\left( \left( 0.891\right) \left( 0.454\right)x'^{2}+\left(0.891\right) ^{2}x' y' -\left( 0.454\right) ^{2}x' y' -\left( 0.891\right) \left( 0.454\right)y'^{2}\right) -2(\left( 0.454x' \right)^{2}+2\left( \left( 0.454\right) \left(0.891\right) x'y' \right) +\left( 0.891\right) y'^{2})-6=0$
After simpification, we have
$2x'^{2}-3y'^{2}=6\Longrightarrow \frac{x'^{2}}{3}-\frac{y'^{2}}{2}=1$
The conic section is a hyperbola.
