Solution:$x^2-2x-3 = 0$
$D=16, x_1=3, x_2=-1$
$x^2-2x-3 = (x-3)(x+1)$
| $(-\infin,-1)$ | $[-1,2)$ | $[2, 3)$ | $[3, +\infin)$ |
$(x-3)(x+1)$ | + | - | - | + |
$x-2$ | - | - | + | + |
Case 1. $x\in (-\infin,-1)$
$x^2-2x-3+2(-(x-2))<5$
$x^2-2x-3-2(x-2)<5$
$x^2-2x-3-2x+4<5$
$x^2-4x-4<0$
$D=32,\ \ x_1=2-\sqrt{2},\ \ x_2=2+\sqrt{2}$
$\Rightarrow x^2-4x-4<0 \Leftrightarrow x\in (2-2\sqrt{2}, 2+2\sqrt{2})$
But $x\in (-\infin, -1)$
$\Rightarrow x\in \varnothing$
Case 2. $x\in [-1,2)$
$-(x^2-2x-3)+2(-(x-2))<5$
$-x^2+2x+3-2(x-2)<5$
$-x^2+2x+3-2x+4<5$
$-x^2+7<5$
$-x^2+2<0$
$x^2-2>0$
$(x-\sqrt{2})(x+\sqrt{2})>0 \Leftrightarrow x \in (-\infin, -\sqrt{2})\cup(\sqrt{2}, +\infin)$
But $x\in [-1,2) \Rightarrow x \in (\sqrt2, 2)$
Case 3. $x\in [2,3)$
$-(x^2-2x-3)+2(x-2)<5$
$-x^2+2x+3+2x-4<5$
$-x^2+4x-1<5$
$x^2-4x+6>0$
$D=-8 < 0 \Leftrightarrow \forall x$ is solution.
But $x\in [2,3) \Rightarrow x \in [2,3)$
Case 4. $x\in [3, +\infin)$
$(x^2-2x-3)+2(x-2)<5$
$x^2-2x-3+2x-4<5$
$x^2-12<0 \Leftrightarrow (x-2\sqrt3)(x+2\sqrt3) < 0$
$\Rightarrow x \in (-2\sqrt3, 2\sqrt3)$
But $x\in [3, +\infin) \Rightarrow x \in [3, 2\sqrt3)$
Answer: $x\in(\sqrt2, 2\sqrt3)$