Equation

Linear, quadratic, module, parametric equations

Equation

Postby Guest » Sun Sep 16, 2018 3:43 pm

[tex]4*25^x-25*4^{x+1}=9*10^x[/tex]
How can I solve it?
Thank you
Guest
 

Re: Equation

Postby Guest » Mon Sep 17, 2018 12:38 am

4.[tex]25^{x}[/tex]-25.[tex]4^{x+1}[/tex]=9.[tex]10^{x}[/tex]
4[tex](5^{2})^{x}[/tex]-25.4.[tex]4^{x}[/tex]=9.[tex](5.2)^{x}[/tex]
4.[tex]5^{2x}[/tex]-100[tex](2^{2})^{x}[/tex]=9.[tex]5^{x}[/tex].[tex]2^{x}[/tex]
4.[tex]5^{2x}[/tex]-100.[tex]2^{2x}[/tex]-9.[tex]5^{x}[/tex].[tex]2^{x}[/tex]=0 /:[-[tex]5^{2x}[/tex][tex]\ne[/tex]0 [Obligatory divisible ]
Guest
 

Re: Equation

Postby Guest » Mon Sep 17, 2018 1:12 am

Then replace it with a new unknown.
Answer: x=2
Guest
 


Return to Equations



Who is online

Users browsing this forum: No registered users and 2 guests