Dave's Proof of the ABC Conjecture

Dave's Proof of the ABC Conjecture

Postby Guest » Sun Jul 28, 2019 5:40 pm

ABC-Conjecture (Masser-Oesterlé, 1985):

Let [tex]\beta[/tex] > 1. Then, with finitely many exceptions, we have C < rad[tex](ABC)^{\beta}[/tex].

In a 'nutshell', for positive integers, A, B, and C we have have:

[tex]\prod_{j_1 =1}^{l_1}[/tex][tex]p_{j_1}[/tex] [tex]\prod_{j_2 =1}^{l_2}[/tex] [tex]p_{j_2}[/tex] [tex]\prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}[/tex]

= rad(ABC) = [tex](\frac{C}{\gamma})^{1/{\beta}}[/tex] = [tex](\frac{\prod_{j_3 =1}^{l_3}p_{j_3}^{k_{j_3}}}{\gamma})^{1/{\beta}}[/tex]

for some [tex]{\beta} > 1[/tex] such that:

Case 1: [tex]0 < \gamma < 1[/tex] implies an infinite set of triples, (A, B, C);

Case 2: [tex]\gamma > 1[/tex] implies an empty or finite set of triples, (A, B, C);

according to [tex]0 < \gamma < 2 * \prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}^{k_{j_3} - 3\beta}[/tex]

such that gcd(A, B) = gcd(A, C) = gcd(B, C) = 1 with A < B < C = A + B.



Notes:

[tex]k_{j_3}[/tex] represent constants (integers [tex]\ge 1[/tex]) while [tex]\beta \ge 1[/tex] is unrestricted (no upper bound) variable.

Case 1: [tex]0 < \gamma < 1[/tex] also implies [tex]k_{j_3} < 3 \beta[/tex] such that [tex]2 * \prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}^{k_{j_3} - 3\beta} < 1[/tex].

Case 2: [tex]\gamma > 1[/tex] also implies [tex]k_{j_3} \ge 3 \beta[/tex] which forces a upper bound on [tex]\beta[/tex]
such that [tex]2 * \prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}^{k_{j_3} - 3\beta} > 1[/tex].

And when that upper bound on [tex]{\beta}[/tex] for case 2 is exceeded, there is a solution in case 1.

David Cole.

Relevant Reference Links:

'Searching for a valid proof of the abc Conjecture',

https://www.math10.com/forum/viewtopic.php?f=63&t=1793;

'What is the proof of the ABC Conjecture',

https://www.researchgate.net/post/What_is_the_proof_of_the_ABC_Conjecture.
Guest
 

Re: Dave's Proof of the ABC Conjecture

Postby Guest » Sun Jul 28, 2019 6:22 pm

Guest wrote:ABC-Conjecture (Masser-Oesterlé, 1985):

Let [tex]\beta[/tex] > 1. Then, with finitely many exceptions, we have C < rad[tex](ABC)^{\beta}[/tex].

Proof of the ABC Conjecture:

In a 'nutshell', for positive integers, A, B, and C we have have:

[tex]\prod_{j_1 =1}^{l_1}[/tex][tex]p_{j_1}[/tex] [tex]\prod_{j_2 =1}^{l_2}[/tex] [tex]p_{j_2}[/tex] [tex]\prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}[/tex]

= rad(ABC) = [tex](\frac{C}{\gamma})^{1/{\beta}}[/tex] = [tex](\frac{\prod_{j_3 =1}^{l_3}p_{j_3}^{k_{j_3}}}{\gamma})^{1/{\beta}}[/tex]

for some [tex]{\beta} > 1[/tex] such that:

Case 1: [tex]0 < \gamma < 1[/tex] implies an infinite set of triples, (A, B, C);

Case 2: [tex]\gamma > 1[/tex] implies an empty or finite set of triples, (A, B, C);

according to [tex]0 < \gamma < 2 * \prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}^{k_{j_3} - 3\beta}[/tex]

such that gcd(A, B) = gcd(A, C) = gcd(B, C) = 1 with A < B < C = A + B.



Notes:

The exponent, [tex]k_{j_3}[/tex], represent constants (integers [tex]\ge 1[/tex]) while [tex]\beta \ge 1[/tex] is unrestricted (no upper bound) variable.

Case 1: [tex]0 < \gamma < 1[/tex] also implies [tex]k_{j_3} < 3 \beta[/tex] such that [tex]2 * \prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}^{k_{j_3} - 3\beta} < 1[/tex].

Case 2: [tex]\gamma > 1[/tex] also implies [tex]k_{j_3} \ge 3 \beta[/tex] which forces a upper bound on [tex]\beta[/tex]
such that [tex]2 * \prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}^{k_{j_3} - 3\beta} > 1[/tex].

And when that upper bound on [tex]{\beta}[/tex] for case 2 is exceeded, there is a solution in case 1.

David Cole.

Relevant Reference Links:

'Searching for a valid proof of the abc Conjecture',

https://www.math10.com/forum/viewtopic.php?f=63&t=1793;

'What is the proof of the ABC Conjecture?',

https://www.researchgate.net/post/What_is_the_proof_of_the_ABC_Conjecture.
Guest
 

Re: Dave's Proof of the ABC Conjecture

Postby Guest » Thu Aug 01, 2019 12:13 am

ABC-Conjecture (Masser-Oesterlé, 1985):

Let [tex]\beta[/tex] > 1. Then, with finitely many exceptions, we have C < rad[tex](ABC)^{\beta}[/tex].

Proof of the ABC Conjecture:

In a 'nutshell', for positive integers, A, B, and C we have:

[tex]\prod_{j_1 =1}^{l_1}[/tex][tex]p_{j_1}[/tex] [tex]\prod_{j_2 =1}^{l_2}[/tex] [tex]p_{j_2}[/tex] [tex]\prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}[/tex]

= rad(ABC) = [tex](\frac{C}{\gamma})^{1/{\beta}}[/tex] = [tex](\frac{\prod_{j_3 =1}^{l_3}p_{j_3}^{k_{j_3}}}{\gamma})^{1/{\beta}}[/tex]

for some [tex]{\beta} > 1[/tex] such that:

Case 1: [tex]0 < \gamma < 1[/tex] implies an infinite set of triples, (A, B, C);

Case 2: [tex]\gamma > 1[/tex] implies an empty or finite set of triples, (A, B, C);

according to [tex]0 < \gamma < 2 * \prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}^{k_{j_3} - 3\beta}[/tex]

such that gcd(A, B) = gcd(A, C) = gcd(B, C) = 1 with A < B < C = A + B.



Notes:

The exponent, [tex]k_{j_3}[/tex], represent constants (integers [tex]\ge 1[/tex]) while [tex]\beta \ge 1[/tex] is unrestricted (no upper bound) variable.

Case 1: [tex]0 < \gamma < 1[/tex] also implies [tex]k_{j_3} < 3 \beta[/tex] such that [tex]2 * \prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}^{k_{j_3} - 3\beta} < 1[/tex].

Case 2: [tex]\gamma > 1[/tex] also implies [tex]k_{j_3} \ge 3 \beta[/tex] which forces a upper bound on [tex]\beta[/tex]
such that [tex]2 * \prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}^{k_{j_3} - 3\beta} > 1[/tex].

And when that upper bound on [tex]{\beta}[/tex] for case 2 is exceeded, there is a solution in case 1.

David Cole.

Relevant Reference Links:

'Searching for a valid proof of the abc Conjecture',

https://www.math10.com/forum/viewtopic.php?f=63&t=1793;

'What is the proof of the ABC Conjecture?',

https://www.researchgate.net/post/What_is_the_proof_of_the_ABC_Conjecture.
Guest
 

Re: Dave's Proof of the ABC Conjecture

Postby Guest » Mon Aug 12, 2019 12:24 am

Guest wrote:ABC-Conjecture (Masser-Oesterlé, 1985):

Let [tex]\beta[/tex] > 1. Then, with finitely many exceptions, we have C < rad[tex](ABC)^{\beta}[/tex].

Proof of the ABC Conjecture:

In a 'nutshell', for positive integers, A, B, and C we have:

[tex]\prod_{j_1 =1}^{l_1}[/tex][tex]p_{j_1}[/tex] [tex]\prod_{j_2 =1}^{l_2}[/tex] [tex]p_{j_2}[/tex] [tex]\prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}[/tex]

= rad(ABC) = [tex](\frac{C}{\gamma})^{1/{\beta}}[/tex] = [tex](\frac{\prod_{j_3 =1}^{l_3}p_{j_3}^{k_{j_3}}}{\gamma})^{1/{\beta}}[/tex]

for some [tex]{\beta} > 1[/tex] such that:

Case 1: [tex]0 < \gamma < 1[/tex] implies an infinite set of triples, (A, B, C);

Case 2: [tex]\gamma > 1[/tex] implies an empty or finite set of triples, (A, B, C);

according to [tex]0 < \gamma < 2 * \prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}^{k_{j_3} - 3\beta}[/tex]

such that gcd(A, B) = gcd(A, C) = gcd(B, C) = 1 with A < B < C = A + B.



Notes:

The exponent, [tex]k_{j_3}[/tex], represent constants (integers [tex]\ge 1[/tex]) while [tex]\beta > 1[/tex] is unrestricted (no upper bound) variable.

Case 1: [tex]0 < \gamma < 1[/tex] also implies [tex]k_{j_3} < 3 \beta[/tex] such that [tex]2 * \prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}^{k_{j_3} - 3\beta} < 1[/tex].

Case 2: [tex]\gamma > 1[/tex] also implies [tex]k_{j_3} \ge 3 \beta[/tex] which forces a upper bound on [tex]\beta[/tex]
such that [tex]2 * \prod_{j_3 =1}^{l_3}[/tex][tex]p_{j_3}^{k_{j_3} - 3\beta} > 1[/tex].

And when that upper bound on [tex]{\beta}[/tex] for case 2 is exceeded, there is a solution in case 1.

David Cole.

Relevant Reference Links:

'Searching for a valid proof of the abc Conjecture',

https://www.math10.com/forum/viewtopic.php?f=63&t=1793;

'What is the proof of the ABC Conjecture?',

https://www.researchgate.net/post/What_is_the_proof_of_the_ABC_Conjecture.
Guest
 

Re: Dave's Proof of the ABC Conjecture

Postby Guest » Sat Nov 02, 2019 3:27 pm

Why was the first post copied three times without comment?
Guest
 

Re: Dave's Proof of the ABC Conjecture

Postby Guest » Sat Nov 02, 2019 3:49 pm

Guest wrote:Why was the first post copied three times without comment?


It is human to error... However, those copies are all updates with minor or important changes.
Guest
 


Return to Number Theory



Who is online

Users browsing this forum: No registered users and 3 guests