Guest wrote:Help solving this problem.
Problem
Add the following vectors:
A = 3[ b][e], θA = 1[c]4° and B = 2[c][d], θB = 3[a]8°
(Note: if PIN = 34659, then 3[ b][e] = 349)
Round your answers to one decimal place.
Good afternoon!
PIN = 34659, then:
[a]=3
[ b]=4
[c]=6
[d]=5
[e]=9
So:
Data:
[tex]\begin{cases}\|\vec{A}\|=349&\theta_A=164^{\circ}\\\|\vec{B}\|=265&\theta_B=338^{\circ}\end{cases}[/tex]
Desired vector
C:
[tex]\vec{C}=\vec{A}+\vec{B}[/tex]
Coordinates of vector
A:
[tex]\|\vec{A_x}\|=340\times\cos\;164^{\circ}=-326,83\\
\|\vec{A_y}\|=340\times\sin\;164^{\circ}=93,72[/tex]
Coordinates of vector
B:
[tex]\|\vec{B_x}\|=265\times\cos\;338^{\circ}=245,70\\
\|\vec{B_y}\|=265\times\sin\;338^{\circ}=-99,27[/tex]
Sum of vectors
A and
B:
[tex]\|\vec{C_x}\|=\|\vec{A_x}\|+\|\vec{B_x}\|=-81,13\\
\|\vec{C_y}\|=\|\vec{A_y}\|+\|\vec{B_x}\|=-5,55[/tex]
Now the solution:
[tex]\begin{cases}\|\vec{C}\|=\sqrt{81,13^2+5,55^2}=81,32\\
\theta_C=-\arctan\left(\dfrac{5,55}{81,13}\right)=-176,08^{\circ}\end{cases}[/tex]
I hope I have helped!