Simplify square root fraction

Simplify square root fraction

Postby TigerLittle » Thu Jul 25, 2019 3:29 pm


Hi
I have to simplify this square root fraction:
10/√5+√20

The answer is 4√5, but I do not get to that answer.
Please help.
TigerLittle
 
Posts: 1
Joined: Thu Jul 25, 2019 3:15 pm
Reputation: 0

Re: Simplify square root fraction

Postby Baltuilhe » Sat Jul 27, 2019 3:00 pm

Good afternoon! :)

[tex]\dfrac{10}{\sqrt{5}}+\sqrt{20}=\dfrac{10}{\sqrt{5}}\overbrace{\left(\times\dfrac{\sqrt{5}}{\sqrt{5}}\right)}^{\times 1}+\sqrt{\underbrace{4\times 5}_{20}}[/tex]

[tex]=\dfrac{10\sqrt{5}}{\left(\sqrt{5}\right)^2}+\sqrt{4}\times\sqrt{5}=\dfrac{10\sqrt{5}}{5}+2\sqrt{5}[/tex]

[tex]=\dfrac{\cancel{10}^2\sqrt{5}}{\cancel{5}}+2\sqrt{5}=2\sqrt{5}+2\sqrt{5}=\color{blue}\boxed{4\sqrt{5}}[/tex]

I hope to have helped u! ;)

Baltuilhe
 
Posts: 35
Joined: Fri Dec 14, 2018 3:55 pm
Reputation: 26

Re: Simplify square root fraction

Postby Guest » Tue Aug 20, 2019 8:05 am

What you have written, "[tex]10/\sqrt{5}+ \sqrt{20}[/tex]" is correctly [tex]\frac{10}{\sqrt{5}+ \sqrt{20}}[/tex] but some might have written that when they meant [tex]10/(\sqrt{5}+ \sqrt{20})= \frac{10}{\sqrt{5}+ \sqrt{20}}[/tex]. In that case, since [tex]\sqrt{20}= \sqrt{4(5)}= 2\sqrt{5}[/tex], we can write [tex]\frac{10}{3\sqrt{5}}[/tex] and, rationalizing the denominator [tex]\frac{10\sqrt{5}}{5}[/tex].
Guest
 


Return to Fractions



Who is online

Users browsing this forum: No registered users and 1 guest