# Mathematics for Economist 1: Profit maximization

### Mathematics for Economist 1: Profit maximization

Given demand and cost function as;
price=25-3Q
Cost=$$Q^2+6Q$$
1.Find the profit function.
2.Find the price and output that maximizes the profit.
3. Find the maximum profit.
econmas

Posts: 1
Joined: Fri Feb 19, 2021 3:35 am
Reputation: 0

### Re: Mathematics for Economist 1: Profit maximization

Good night!

$$p(q)=25-3q\\ C(q)=q^2+6q$$

1) Profit:
Let's discover, first, the revenue:
$$R(q)=q.p(q)=q(25-3q)=25q-3q^2$$

Profit is Revenue minus Cost. So:
$$P(q)=R(q)-C(q)=25q-3q^2-\left(q^2+6q\right)\\ P(q)=25q-3q^2-q^2-6q\\ P(q)=19q-4q^2$$

2)
The price and output that maximizes the profit:
$$\\P'(q)=0\\ 19-8q=0\\ 8q=19\\ q=\frac{19}{8}\\ q=2,375\\ q=2$$ (output)

price:
$$p(q)=25-3q\\ p(2)=25-3(2)=25-6=19$$ (price)

3) Maximum profit
$$P(2)=19(2)-4(2)^2\\ P(2)=38-16=22\\$$

Hope to Have Helped! (3H)

Baltuilhe

Posts: 97
Joined: Fri Dec 14, 2018 3:55 pm
Reputation: 62

### Re: Mathematics for Economist 1: Profit maximization

I find it peculiar that while Price is, of course, the "price per item" which is why "revenue" is price times quantity, cost is total cost. (Which it clearly is because it is increasing while "cost per item made" typically decreases due to "economies of scale.)
Guest