Differential calculus problem using limits

Differential calculus problem using limits

Postby Guest » Thu Dec 13, 2018 11:37 am

1.a) Use the formal definition of the derivative to compute f'(2) when
[tex]f(x)=(1-x)/2x[/tex]

1.b) Do the same to find f'(x)
Guest
 

Re: differential calculus problem using limits

Postby nathi123 » Thu Dec 13, 2018 1:16 pm

a) [tex]f'(2) = \lim_{x \to 2}\frac{f(x) - f(2)}{x-2}=\lim_{x \to 2}\frac{\frac{1-x}{2x}-\frac{-1}{4}}{x-2}=\lim_{x \to 2}\frac{2-x}{4x(x-2)}=\lim_{x \to 2}(-\frac{1}{4x})=-\frac{1}{8}[/tex]
b) f'(x) = [tex]\lim_{x \to x_{0 }}\frac{f(x) - f(x_{0 }}{x-x_{0 }}=\lim_{x \to x_{0 }}\frac{\frac{1-x}{2x}-\frac{1-x_{0 }}{2x_{0 }}}{x-x_{0 }}=\lim_{x \to x_{0 }}\frac{x_{0 }-x}{2xx_{0 }(x-x_{0 })}=\lim_{x \to x_{0 }}\frac{-1}{2xx_{0}}=-\frac{1}{2x_{0 }^{2}}[/tex].

nathi123
 
Posts: 21
Joined: Sun Sep 17, 2017 1:56 pm
Reputation: 19

Re: differential calculus problem using limits

Postby Guest » Thu Dec 13, 2018 6:39 pm

Could you explain the formulas used and why?
Guest
 

Re: Differential calculus problem using limits

Postby nathi123 » Fri Dec 14, 2018 5:13 am

I use the difinition of the derivative in point ,if y = f(x) [tex]\Rightarrow y'(x_{0}) = \lim_{x \to x_{0 }}\frac{f(x)-f(x_{0})}{x-x_{0 }}[/tex]

nathi123
 
Posts: 21
Joined: Sun Sep 17, 2017 1:56 pm
Reputation: 19


Return to Calculus - integrals, lim, functions



Who is online

Users browsing this forum: No registered users and 1 guest