# Greatest value of sin*sin*sin

Trigonometry equalities, inequalities and expressions - sin, cos, tan, cot

### Greatest value of sin*sin*sin

Find the greatest value of $$\sin \left(\alpha\right)\sin \left(\beta\right)\sin \left(\gamma\right)$$ where $$\alpha$$, $$\beta$$ and $$\gamma$$ are angles of triangle.

MM

Posts: 82
Joined: Tue Jul 22, 2008 7:36 am
Location: Bulgaria
Reputation: 7

### Re: Greatest value of sin*sin*sin

To find the greatest value of sin* sin*sin where $$\alpha, \beta, \gamma$$ are the angles of the triangle.

Let the sides of the triangle be 5,3,4
$$sin \alpha * sin \beta *sin \gamma$$
= (1)* (4/5)*(3/5)
=(4/5)*(3/5)
=12/25
The greatest value is 12/25.

adamsmith

Posts: 28
Joined: Tue Jun 25, 2013 2:28 am
Reputation: 11

### Re: Greatest value of sin*sin*sin

You do not prove anything with that. It just a special case.

Math Tutor
Site Admin

Posts: 411
Joined: Sun Oct 09, 2005 11:37 am
Reputation: 28

### Re: Greatest value of sin*sin*sin

Spoiler: show
$$\sin(x)\sin(y) = (\cos(x-y)-\cos(x+y))/2$$, so if any pair of the angles are not equal, say $$\alpha\neq\beta$$ we can increase the product by replacing $$\alpha,\beta$$ with $$(\alpha+\beta)/2,(\alpha+\beta)/2$$. The maximum occurs when $$\alpha=\beta=\gamma=60^\circ$$.

R. Baber.
Guest

### Re: Greatest value of sin*sin*sin

The Baber's post is a real proof.

Math Tutor
Site Admin

Posts: 411
Joined: Sun Oct 09, 2005 11:37 am
Reputation: 28

Return to Trigonometry - sin, cos, tan, cot, arcsin, arccos, arctan, arccot

### Who is online

Users browsing this forum: No registered users and 1 guest