Inverzna matrica

Autor Catalin David

Matrica je regularna ako je njena determinanta različita od 0 (Matrica će imati svoju inverznu matricu samo ako je regularna, u suprotnom matricu koja nema inverznu matricu, tj. čija je determinanta jednaka nuli zovemo singularna matrica). Ako je matrica A regularna matrica, tada njenu inverznu matricu označavamo sa $A^{-1}$ gde je $A^{-1}=\frac{1}{\left|A\right|} \cdot adj(A)$. $adj(A)$ je adjungovana matrica matrice A.

Određivanje inverzne matrice

  1. Računamo determinantu matrice.
  2. Određujemo transponovanu matricu.
  3. Svaki element transponovane matrice zamenjujemo sa njemu odgovarajućim kofaktorom. Rezultat je adjungovana matrica.
  4. Određujemo inverznu matricu.

Primer 46
$A=\begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}$

$\left|A\right|=1\cdot 5-6=-1$
Ova matrica je regularna pa možemo odrediti njenu inverznu matricu.

$ A^{T}= \begin{pmatrix} 1 & 2\\ 3 & 5 \end{pmatrix}$

Zamenjujemo elemente transponovane matrice sa odgovarajućim kofaktorima.

$1\longrightarrow (-1)^{1+1}\cdot \Delta_{1,1}=(-1)^{2}\cdot5 = 5$
$2\longrightarrow (-1)^{1+2}\cdot \Delta_{1,2}=(-1)^{3}\cdot3 = -3$
$3\longrightarrow (-1)^{2+1}\cdot \Delta_{2,1}=(-1)^{3}\cdot2 = -2$
$5\longrightarrow (-1)^{2+2}\cdot \Delta_{2,2}=(-1)^{4}\cdot1 = 1$

$adj(A)= \begin{pmatrix} 5 & -3\\ -2 & 1\\ \end{pmatrix}$

$A^{-1}=- \begin{pmatrix} 5 & -3\\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -5 & 3\\ 2 & -1 \end{pmatrix}$

Primer 47
$B=\begin{pmatrix} 2 & -7\\ -1 & 6 \end{pmatrix}$

$\left|B\right|=2\cdot 6-(-7)\cdot (-1) = 5$

Matrica je regularna pa možemo odrediti njoj inverznu matricu.
$A^{T}= \begin{pmatrix} 2 & -1\\ -7 & 6 \end{pmatrix}$

Zamenjujemo elemente transponovane matrice sa odgovarajućim kofaktorima.
$2\longrightarrow (-1)^{1+1}\cdot \Delta_{1,1}=(-1)^{2}\cdot6 = 6$
$-1\longrightarrow (-1)^{1+2}\cdot \Delta_{1,2}=(-1)^{3}\cdot(-7) = 7$
$-7\longrightarrow (-1)^{2+1}\cdot \Delta_{2,1}=(-1)^{3}\cdot(-1) = 1$
$6\longrightarrow (-1)^{2+2}\cdot \Delta_{2,2}=(-1)^{4}\cdot2 = 2$

$adj(A)= \begin{pmatrix} 6 & 7\\ 1 & 2 \end{pmatrix}$

$A^{-1}=\frac{1}{5} \begin{pmatrix} 6 & 7\\ 1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{6}{5} & \frac{7}{5}\\ \frac{1}{5} & \frac{2}{5} \end{pmatrix}$

Primer 48
$C=\begin{pmatrix} 1 & 3 & 2\\ 4 & 1 & 1\\ 1 & 2 & 3\\ \end{pmatrix}$

Primenjujući formulu za računanje determinante dobijamo: $\left|B\right|=-18$.

Matrica je regularna pa možemo odrediti njoj inverznu matricu.
$C^{T}=\begin{pmatrix} 1 & 4 & 1\\ 3 & 1 & 2\\ 2 & 1 & 3 \end{pmatrix}$

Zamenjujemo elemente transponovane matrice sa odgovarajućim kofaktorima.
$ 1\longrightarrow (-1)^{1+1}\cdot \Delta_{1,1}=(-1)^{2}\cdot \begin{vmatrix} 1 & 2\\ 1 & 3 \end{vmatrix} = 3 - 2 = 1$

$4\longrightarrow (-1)^{1+2}\cdot \Delta_{1,2}=(-1)^{3}\cdot \begin{vmatrix} 3 & 2\\ 2 & 3 \end{vmatrix} = -(9-4)=-5$

$1\longrightarrow (-1)^{1+3}\cdot \Delta_{1,3}=(-1)^{4}\cdot \begin{vmatrix} 3 & 1\\ 2 & 1 \end{vmatrix} = 3-2=1$

$3\longrightarrow (-1)^{2+1}\cdot \Delta_{2,1}=(-1)^{3}\cdot \begin{vmatrix} 4 & 1\\ 1 & 3\\ \end{vmatrix} = -(12-1)=-11$

$1\longrightarrow (-1)^{2+2}\cdot \Delta_{2,2}=$ $(-1)^{4}\cdot\begin{vmatrix} 1 & 1\\ 2 & 3\\ \end{vmatrix}=3-2=1$

$2\longrightarrow (-1)^{1+3}\cdot \Delta_{2,3}=$ $(-1)^{5}\cdot\begin{vmatrix} 1 & 4\\ 2 & 1 \end{vmatrix}= -(1-8)=7$

$2\longrightarrow (-1)^{3+1}\cdot \Delta_{3,1}=$ $(-1)^{4}\cdot\begin{vmatrix} 4 & 1\\ 1 & 2 \end{vmatrix}=8-1=7$

$1\longrightarrow (-1)^{3+2}\cdot \Delta_{3,2}=$ $(-1)^{5}\cdot \begin{vmatrix} 1 & 1\\ 3 & 2 \end{vmatrix}=-(2-3)=1$

$3\longrightarrow (-1)^{3+3}\cdot \Delta_{3,3}=$ $(-1)^{6}\cdot\begin{vmatrix} 1 & 4\\ 3 & 1 \end{vmatrix}=1-12=-11$

$adj(A)= \begin{pmatrix} 1 & -5 & 1\\ -11 & 1 & 7\\ 7 & 1 & -11 \end{pmatrix}$

$A^{-1} = - \frac{1}{18}\cdot \begin{pmatrix} 1 & -5 & 1\\ -11 & 1 & 7\\ 7 & 1 & -11 \end{pmatrix} =$ $\begin{pmatrix} - \frac{1}{18} & \frac{5}{18} & -\frac{1}{18}\\ \frac{11}{18} & -\frac{1}{18} & -\frac{7}{18}\\ -\frac{7}{18} & -\frac{1}{18} & \frac{11}{18} \end{pmatrix}$

Osobine inverzne matrice

Ako je A inverzna matrica tada je:
$A\cdot A^{-1} = A^{-1}\cdot A=I_{n}$

Primer 49
$A=\begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}$

$A^{-1}= \begin{pmatrix} -5 & 3\\ 2 & -1 \end{pmatrix}$

$A\cdot A^{-1}= \begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix} \begin{pmatrix} -5 & 3\\ 2 & -1 \end{pmatrix}=$ $\begin{pmatrix} 1\cdot(-5)+3\cdot2 & 1\cdot3 + 3\cdot(-1)\\ 2\cdot(-5)+5\cdot2 & 2\cdot3 +5\cdot(-1) \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}= I_{2}$

$A^{-1}\cdot A= \begin{pmatrix} -5 & 3\\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}=$ $\begin{pmatrix} -5\cdot1 + 3\cdot2 & -5\cdot3 + 3\cdot 5\\ 2\cdot1 +(-1)\cdot2 & 2\cdot3 +(-1)\cdot5 \end{pmatrix}= \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}=I_{2}$


Kontakt imejl:
Copyright © 2005 - 2019