ИСТОРИЯ развития топологии

ИСТОРИЯ развития топологии

Сообщение Rados » Вс окт 13, 2019 2:44 pm

В 1640 французский философ и математик Р.Декарт (1596–1650) нашел инвариантное соотношение между числом вершин, ребер и граней простых многогранников. Это соотношение Декарт выразил формулой V – E + F = 2, где V – число вершин, E – число ребер и F – число граней. В 1752 швейцарский математик Л.Эйлер (1707–1783) дал строгое доказательство этой формулы. Еще один вклад Эйлера в развитие топологии – это решение знаменитой задачи о кёнигсбергских мостах. Речь шла об острове на реке Прегель в Кёнигсберге (в том месте, где река разделяется на два рукава – Старый и Новый Прегель) и семи мостах, соединяющих остров с берегами. Задача состояла в том, чтобы выяснить, можно ли обойти все семь мостов по непрерывному маршруту, побывав на каждом только один раз и вернувшись в исходную точку. Эйлер заменил участки суши точками, а мосты – линиями. Полученную конфигурацию Эйлер назвал графом, точки – его вершинами, а линии – ребрами. Вершины он разделил на четные и нечетные в зависимости от того, четное или нечетное число ребер выходит из вершины. Эйлер показал, что все ребра графа можно обойти ровна по одному разу по непрерывному замкнутому маршруту, лишь если граф содержит только четные вершины. Так как граф в задаче о кёнигсбергских мостах содержит только нечетные вершины, мосты невозможно обойти по непрерывному маршруту, побывав на каждом ровно по одному разу и вернувшись к началу маршрута.
Предложенное Эйлером решение задачи о кенигсбергских мостах зависит только от взаимного расположения мостов. Оно положило формальное начало топологии как разделу математики. К.Гаусс (1777–1855) создал теорию узлов, которой позднее занимались И.Листинг (1808–1882), П.Тэйт (1831–1901) и Дж.Александер. В 1840 А.Мёбиус (1790–1868) сформулировал так называемую проблему четырех красок, которую впоследствии исследовали О.де Морган (1806–1871) и А.Кэли (1821–1895). Первым систематическим трудом по топологии были Предварительные исследования по топологии Листинга (1874).

Основателями современной топологии являются Г.Кантор (1845–1918), А.Пуанкаре (1854–1912) и Л.Брауэр (1881–1966).


РАЗДЕЛЫ ТОПОЛОГИИ.
Топологию можно подразделить на три области: 1) комбинаторную топологию, изучающую геометрические формы посредством их разбиения на простейшие фигуры, регулярным образом примыкающие друг к другу; 2) алгебраическую топологию, занимающуюся изучением алгебраических структур, связанных с топологическими пространствами, с упором на теорию групп; 3) теоретико-множественную топологию, изучающую множества как скопления точек (в отличие от комбинаторных методов, представляющих объект как объединение более простых объектов) и описывающую множества в терминах таких топологических свойств, как открытость, замкнутость, связность и т.д. Разумеется, такое деление топологии на области в чем-то произвольно; многие топологи предпочитают выделять в ней другие разделы.

НЕКОТОРЫЕ ОСНОВНЫЕ ПОНЯТИЯ.
Топологическое пространство состоит из множества точек S и набора S подмножеств множества S, удовлетворяющего следующим аксиомам:
(1) все множество S и пустое множество принадлежат набору S;
(2) объединение любой совокупности множеств из S есть множество из S;
(3) пересечение любого конечного числа множеств из S есть множество из S.
Множества, входящие в набор S, называются открытыми множествами, а сам этот набор – топологией в S. См. МНОЖЕСТВ ТЕОРИЯ.

Топологическое преобразование, или гомеоморфизм, одной геометрической фигуры S на другую, Sў, – это отображение (p ® pў) точек p из S в точки pў из Sў, удовлетворяющее следующим условиям: 1) устанавливаемое им соответствие между точками из S и Sў взаимно однозначно, т.е. каждой точке p из S соответствует только одна точка pў из Sў и в каждую точку pў отображается только одна точка p; 2) отображение взаимно непрерывно (непрерывно в обе стороны), т.е. если заданы две точки p, q из S и точка p движется так, что расстояние между ней и точкой q стремится к нулю, то расстояние между соответствующими точками pў, qў из Sў также стремится к нулю, и наоборот.
Геометрические фигуры, переходящие одна в другую при топологических преобразованиях, называются гомеоморфными. Окружность и граница квадрата гомеоморфны, так как их можно перевести друг в друга топологическим преобразованием (т.е. изгибанием и растяжением без разрывов и склеиваний, например, растяжением границы квадрата на описанную вокруг него окружность). Сфера и поверхность куба также гомеоморфны. Чтобы доказать гомеоморфность фигур, достаточно указать соответствующее преобразование, но тот факт, что для каких-то фигур найти преобразование нам не удается, не доказывает, что эти фигуры не гомеоморфны. Здесь помогают топологические свойства.
Топологическим свойством (или топологическим инвариантом) геометрических фигур называется свойство, которым вместе с данной фигурой обладает также любая фигура, в которую она переходит при топологическом преобразовании.
Любое открытое связное множество, содержащее по крайней мере одну точку, называется областью.
Область, в которой любую замкнутую простую (т.е. гомеоморфную окружности) кривую можно стянуть в точку, оставаясь все время в этой области, называется односвязной, а соответствующее свойство области – односвязностью. Если же некоторую замкнутую простую кривую этой области нельзя стянуть в точку, оставаясь все время в этой области, то область называется многосвязной, а соответствующее свойство области – многосвязностью. Представьте себе две круговые области, или диски, одну без дыр, а другую с дырами. Первая область односвязна, вторая многосвязна. Односвязность и многосвязность – топологические свойства. Область с дырой не может перейти при гомеоморфизме в область без дыр. Интересно отметить, что если в многосвязном диске провести по разрезу от каждой из дыр до края диска, то он станет односвязным.
Максимальное число замкнутых простых непересекающихся кривых, по которым можно разрезать замкнутую поверхность, не разделяя ее на отдельные части, называется родом поверхности. Род – топологический инвариант поверхности. Можно доказать, что род сферы равен нулю, род тора (поверхности «бублика») – единице, род кренделя (тора с двумя дырками) – двум, род поверхности с p дырами равен p. Отсюда следует, что ни поверхность куба, ни сфера не гомеоморфны тору.
Среди топологических инвариантов поверхности можно также отметить число сторон и число краев. Диск имеет 2 стороны, 1 край и род 0. Тор имеет 2 стороны, не имеет краев, а его род равен 1.
Введенные выше понятия позволяют уточнить определение топологии: топологией называется раздел математики, изучающий свойства, которые сохраняются при гомеоморфизмах.
Аватара пользователя
Rados
 
Сообщения: 3558
Зарегистрирован: Вт ноя 20, 2018 8:36 am
Откуда: РОССИЯ

Вернуться в Топология



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 2