MENU
❌
Home
Math Forum/Help
Problem Solver
Practice
Worksheets
Tests
Algebra
Geometry
College Math
History
Games
MAIN MENU
1 Grade
Adding and subtracting up to 10
Comparing numbers up to 10
Adding and subtracting up to 20
Addition and Subtraction within 20
2 Grade
Adding and Subtracting up to 100
Addition and Subtraction within 20
3 Grade
Addition and Subtraction within 1000
Multiplication up to 5
Multiplication Table
Rounding
Dividing
Perimeter
Addition, Multiplication, Division
4 Grade
Adding and Subtracting
Addition, Multiplication, Division
Equivalent Fractions
Divisibility by 2, 3, 4, 5, 9
Area of Squares and Rectangles
Fractions
Equivalent Fractions
Least Common Multiple
Adding and Subtracting
Fraction Multiplication and Division
Operations
Mixed Numbers
Decimals
Expressions
6 Grade
Percents
Signed Numbers
The Coordinate Plane
Equations
Expressions
Polynomials
Polynomial Vocabulary
Symplifying Expressions
Polynomial Expressions
Factoring
7 Grade
Angles
Inequalities
Linear Functions
8 Grade
Congurence of Triangles
Linear Functions
Systems of equations
Slope
Parametric Linear Equations
Word Problems
Exponents
Roots
Quadratic Equations
Quadratic Inequalities
Rational Inequalities
Vieta's Formulas
Progressions
Arithmetic Progressions
Geometric Progression
Progressions
Number Sequences
Reciprocal Equations
Logarithms
Logarithmic Expressions
Logarithmic Equations
Logarithmic Equations
Logarithmic Inequalities
Irrational Equations
Irrational Inequalities
Trigonometry
Trigonometry
Identities
Trigonometry
Trigonometric Equations
Trigonometric Inequalities
Extremal value problems
Numbers Classification
Geometry
Intercept Theorem
Slope
Law of Sines
Law of Cosines
Vectors
Modulus Inequalities
Exponential Inequalities
Exponential Equations
Modulus equations
Probabilities
Functions
Min, Max Values
Limits
Limits of Functions
Monotonicity of Functions
Properties of Triangles
Pythagorean Theorem
Matrices
Complex Numbers
Inverse Trigonometric Functions
Analytic Geometry
Analytic Geometry
Circle
Parabola
Ellipse
Conic sections
Polar coordinates
Derivatives
Derivatives
Applications of Derivatives
Derivatives
Integrals
Integrals
Integration by Parts
Trigonometric Substitutions
Application
Differential Equations
Home
Practice
Problems using Vieta's formulas
Easy
Normal
Problems using Vieta's formulas: Difficult Problems with Solutions
Problem 1
If [tex]x_1, x_2[/tex] are the roots of the equation [tex]x^2+5x-3=0[/tex], determine the value of [tex]x_1^2+x_2^2[/tex].
Solution:
First, we rewrite [tex]x_1^2+x_2^2[/tex] in terms of elementary symmetric polynomials:
[tex]x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2=(x_1+x_2)^2-2x_1x_2[/tex].
By Vieta's formulas we have [tex]x_1+x_2=-5[/tex] and [tex]x_1x_2=-3[/tex].
We substitute in the expression in order to get [tex]x_1^2+x_2^2=(-5)^2-2\cdot(-3)=25+6=31[/tex].
Problem 2
If [tex]x_1, x_2[/tex] are the roots of the equation [tex]x^2+11x+12=0[/tex], determine the value of [tex]x_1^2+x_2^2[/tex].
Solution:
First, we rewrite [tex]x_1^2+x_2^2[/tex] in terms of elementary symmetric polynomials:
[tex]x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2=(x_1+x_2)^2-2x_1x_2[/tex].
By Vieta's formulas we have [tex]x_1+x_2=-11[/tex] and [tex]x_1x_2=12[/tex].
We substitute in the expression in order to get [tex]x_1^2+x_2^2=(-11)^2-2\times 12=121-24=97[/tex].
Problem 3
If [tex]x_1, x_2[/tex] are the roots of the equation [tex]x^2+9x+33=0[/tex], determine the value of [tex]\frac{1}{x_1}+\frac{1}{x_2}[/tex].
$-\frac{1}{11}$
$-2$
$-\frac{3}{11}$
$24$
Solution:
[tex]\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_2}{x_1x_2}+\frac{x_1}{x_1x_2}=\frac{x_1+x_2}{x_1x_2}[/tex].
From Vieta's formulas, we have [tex]x_1+x_2=-9[/tex], [tex]x_1x_2=33[/tex].
We substitute and get: [tex]\frac{x_1+x_2}{x_1x_2}=\frac{-9}{33}=-\frac{3}{11}[/tex]
Problem 4
If [tex]x_1, x_2[/tex] are the roots of the equation [tex]x^2-8x+11=0[/tex], determine the value of [tex]x_1^3+x_1^2+x_1+x_2^3+x_2^2+x_2[/tex].
Solution:
We first rewrite the desired expression in terms of the elementary symmetric polynomials.
[tex](x_1^3+x_2^3)+(x_1^2+x_2^2)+(x_1+x_2)=(x_1+x_2)(x_1^2+x_2^2-x_1x_2)+(x_1^2+2x_1x_2+x_2^2-2x_1x_2)+(x_1+x_2) = (x_1+x_2)(x_1^2+2x_1x_2+x_2^2-3x_1x_2)+(x_1+x_2)^2-2x_1x_2+(x_1+x_2)=(x_1+x_2)((x_1+x_2)^2-3x_1x_2)+(x_1+x_2)^2+(x_1+x_2)-2x_1x_2[/tex].
From Vieta's formulas, we know that [tex]x_1+x_2=8[/tex] and [tex]x_2x_2=11[/tex].
We substitute: [tex]8(8^2-3\times 11)+8^2+8-2\times 11=8(64-33)+64+8-22=8\times 31+50=8\times 31+8 \times 6 +2=8\times 37 + 2=298[/tex]
Problem 5
If [tex]x_1, x_2[/tex] are the roots of the equation [tex]x^2-15x+36=0[/tex], determine the value of [tex]|x_1-x_2|[/tex].
Solution:
First, we will use the following identity: [tex]|a|=\sqrt{a^2}[/tex].
This leads us to [tex]|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{x_1^2-2x_1x_2+x_2^2}=\sqrt{x_1^2+2x_1x_2+x_2^2-4x_1x_2}=\sqrt{(x_1+x_2)^2-4x_1x_2}[/tex].
Then we use Vieta's formulas to get [tex]x_1+x_2=15[/tex], [tex]x_1x_2=36[/tex].
The result is [tex]\sqrt{15^2-4.36}=\sqrt{225-144}=\sqrt{81}=9[/tex]
Problem 6
Let [tex]x_1, x_2[/tex] be the roots of the equation [tex]x^2-12x+19=0[/tex]. Determine the value of [tex]x_1(1-x_1)+x_2(1-x_2)[/tex].
Solution:
We rewrite the expression as [tex]x_1-x_1^2+x_2-x_2^2=x_1+x_2-(x_1^2+x_2^2)=x_1+x_2-(x_1^2+2x_1x_2+x_2^2-2x_1x_2)=x_1+x_2-((x_1+x_2)^2-2x_1x_2)=(x_1+x_2)-(x_1+x_2)^2+2x_1x_2=(x_1+x_2)(1-(x_1+x_2))+2x_1x_2[/tex].
From Vieta's formulas we know that [tex]x_1+x_2=12[/tex] and [tex]x_1x_2=19[/tex].
We substitute and get [tex]12(1-12)+2\times 19=-12\times 11+38=-132+38=-94[/tex]
Problem 7
If [tex]x_1, x_2[/tex] are the roots of the equation [tex]x^2-4x+1=0[/tex], determine the value of [tex](x_1-\frac{1}{x_1})^2+(x_2-\frac{1}{x_2})^2[/tex].
Solution:
We remove the parentheses and express in terms of the elementary symmetric polynomials:
[tex]x_1^2-2x_1\frac{1}{x_1}+\frac{1}{x_1^2}+x_2^2-2x_2\frac{1}{x_2}+\frac{1}{x_2^2}=x_1^2+x_2^2+\frac{1}{x_1^2}+\frac{1}{x_2^2}-4=x_1^2+x_2^2+\frac{x_1^2+x_2^2}{(x_1x_2)^2}-4=(x_1^2+x_2^2)(1+\frac{1}{(x_1x_2)^2})-4=((x_1+x_2)^2-2x_1x_2)(1+\frac{1}{(x_1x_2)^2})-4[/tex].
By Vieta's formulas we have [tex]x_1+x_2=4[/tex] and [tex]x_1x_2=1[/tex].
We substitute and get: [tex](4^2-2)(1+1)-4=(16-2)\times 2-4=28-4=24[/tex]
Problem 8
If [tex]x_1, x_2[/tex] are the solutions to the equation [tex]x^2-5x+a^2-2a+1=0[/tex] where [tex]a \in R[/tex]. Find the value of a, for which [tex]x_1x_2[/tex] is minimal.
Solution:
From Vieta's formulas we have [tex]x_1x_2=a^2-2a+1=(a-1)^2[/tex]. Since it is a perfect square, [tex](a-1)^2 \ge 0[/tex], with equality for [tex]a=1[/tex]. So the answer is [tex]a=1[/tex] and the minimal value is 0.
Problem 9 sent by Berenguer Sabadell
Find the value of $\alpha_1^2+\alpha_2^2+\alpha_3^2$ where $\alpha_1$, $\alpha_2$ and $\alpha_3$ are the roots of the equation $3x^3-2x^2+5x-7=0$.
$2$
$\frac{-26}{9}$
$\frac{-26}{3}$
$-2$
Solution:
Using Vieta's formulas, $\alpha_1+\alpha_2+\alpha_3=2/3\Rightarrow\left(\alpha_1+\alpha_2+\alpha_3\right)^2=4/9$
On the other hand, $\left(\alpha_1+\alpha_2+\alpha_3\right)^2=\alpha_1^2+\alpha_2^2+\alpha_3^2+ 2\left(\alpha_1\alpha_2+\alpha_1\alpha_3+\alpha_2\alpha_3\right)$
Using again Vieta's formulas, $\alpha_1\alpha_2+\alpha_1\alpha_3+\alpha_2\alpha_3=5/3$ Then, $\alpha_1^2+\alpha_2^2+\alpha_3^2=4/9-10/3=-26/9$
Observation: the sum of three squares is negative. This is only possible if the values of the roots are complex.
Easy
Normal
Submit a problem on this page.
Problem text:
Solution:
Answer:
Your name(if you would like to be published):
E-mail(you will be notified when the problem is published)
Notes
: use [tex][/tex] (as in the forum if you would like to use latex).
Correct:
Wrong:
Unsolved problems:
Feedback
Contact email:
Follow us on
Twitter
Facebook
Author
Copyright © 2005 - 2024.