# On a General Solution of the Three-Body Problem

### Re: On a General Solution of the Three-Body Problem

Guest wrote:FYI: In our closed system, the total and constant Energy (E) = total Kinetic Energy (K) + total Gravitational Energy (U) of our three-body system.

'The Three-Body Problem', by Prof. Z. Musielak and Prof. B. Quarles,

Guest

### Re: On a General Solution of the Three-Body Problem

Guest wrote:FYI: In our closed system, the total and constant Energy (E) = total Kinetic Energy (K) + total Gravitational Energy (U) of our three-body system.

We recall our system equations with regards to acceleration (a) due to gravitational energy:

1a. $$\frac{d^{2}x_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{x_{1 }-x_{2 }}{r_{12}^{3}} + m_{3 }* \frac{x_{1 }-x_{3 }}{r_{13}^{3}})$$;

2a. $$\frac{d^{2}y_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{y_{1 }-y_{2 }}{r_{12}^{3}} + m_{3 }* \frac{y_{1 }-y_{3 }}{r_{13}^{3}})$$;

3a. $$\frac{d^{2}z_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{z_{1 }-z_{2 }}{r_{12}^{3}} + m_{3 }* \frac{z_{1 }-z_{3 }}{r_{13}^{3}})$$;

4a. $$\frac{d^{2}x_{2 }}{dt^{2}} = -G* (m_{1 }* \frac{x_{2 }-x_{1 }}{r_{21}^{3}} + m_{3 }* \frac{x_{2 }-x_{3 }}{r_{23}^{3}})$$;

5a. $$\frac{d^{2}y_{2 }}{dt^{2}} = -G* ( m_{1 }* \frac{y_{2 }-y_{1 }}{r_{21}^{3}} + m_{3 }* \frac{y_{2 }-y_{3 }}{r_{23}^{3}})$$;

6a. $$\frac{d^{2}z_{2 }}{dt^{2}} = -G* ( m_{1 }* \frac{z_{2 }-z_{1 }}{r_{21}^{3}} + m_{3 }* \frac{z_{2 }-z_{3 }}{r_{23}^{3}})$$;

7a. $$\frac{d^{2}x_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{x_{3 }-x_{1 }}{r_{31}^{3}} + m_{2 }* \frac{x_{3 }-x_{2 }}{r_{32}^{3}})$$;

8a. $$\frac{d^{2}y_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{y_{3 }-y_{1 }}{r_{31}^{3}} + m_{2 }* \frac{y_{3 }-y_{2 }}{r_{32}^{3}})$$;

9a. $$\frac{d^{2}z_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{z_{3 }-z_{1 }}{r_{31}^{3}} + m_{2 }* \frac{z_{3 }-z_{2 }}{r_{32}^{3}})$$

with $$r_{ij} = \sqrt{(x_{i }-x_{j })^{2} + (y_{i }-y_{j })^{2} + (z_{i }-z_{j })^{2} }$$ where G is the gravitational constant.

Now, we generate our final system equations corresponding to the energy conservation law for our closed system:

1. $$.5m_{1 }*(\frac{dx_{1 }}{dt})^{2} + -G* m_{1 }*( m_{2 }* \frac{x_{1 }-x_{2 }}{r_{12}^{3}} + m_{3 }* \frac{x_{1 }-x_{3 }}{r_{13}^{3}})*\triangle r_{1 } =E_{x_{1 }}$$;

2. $$.5m_{1 }*(\frac{dy_{1 }}{dt})^{2} + -G* m_{1 }*( m_{2 }* \frac{y_{1 }-y_{2 }}{r_{12}^{3}} + m_{3 }* \frac{y_{1 }-y_{3 }}{r_{13}^{3}})*\triangle r_{1 } =E_{y_{1 }}$$;

3. $$.5m_{1 }*(\frac{dz_{1 }}{dt})^{2} + -G* m_{1 }*( m_{2 }* \frac{z_{1 }-z_{2 }}{r_{12}^{3}} + m_{3 }* \frac{z_{1 }-z_{3 }}{r_{13}^{3}})*\triangle r_{1 } =E_{z_{1 }}$$;

4. $$.5m_{2 }*(\frac{dx_{2 }}{dt})^{2} + -G* m_{2 }*( m_{1 }* \frac{x_{2 }-x_{1 }}{r_{21}^{3}} + m_{3 }* \frac{x_{2 }-x_{3 }}{r_{23}^{3}})*\triangle r_{2 } =E_{x_{2 }}$$;

5. $$.5m_{2}*(\frac{dy_{2 }}{dt})^{2} + -G* m_{2 }*( m_{2 }* \frac{y_{2 }-y_{1 }}{r_{21}^{3}} + m_{3 }* \frac{y_{2 }-y_{3 }}{r_{23}^{3}})*\triangle r_{2 } =E_{y_{2 }}$$;

6. $$.5m_{2 }*(\frac{dz_{2 }}{dt})^{2} + -G* m_{2 }*( m_{1 }* \frac{z_{2 }-z_{1 }}{r_{21}^{3}} + m_{3 }* \frac{z_{2 }-z_{3 }}{r_{23}^{3}})*\triangle r_{2 } =E_{z_{2 }}$$;

7. $$.5m_{3 }*(\frac{dx_{3 }}{dt})^{2} + -G* m_{3 }*( m_{1 }* \frac{x_{3 }-x_{1 }}{r_{31}^{3}} + m_{2 }* \frac{x_{3 }-x_{2 }}{r_{32}^{3}})*\triangle r_{3 } =E_{x_{3 }}$$;

8. $$.5m_{3 }*(\frac{dy_{3 }}{dt})^{2} + -G* m_{3 }*( m_{1 }* \frac{y_{3 }-y_{1 }}{r_{31}^{3}} + m_{2 }* \frac{y_{3 }-y_{2 }}{r_{32}^{3}})*\triangle r_{3 } =E_{y_{3 }}$$;

9. $$.5m_{3 }*(\frac{dz_{3 }}{dt})^{2} + -G* m_{3 }*( m_{1 }* \frac{z_{3 }-z_{1 }}{r_{31}^{3}} + m_{2 }* \frac{z_{3 }-z_{2 }}{r_{32}^{3}})*\triangle r_{3 } =E_{z_{1 }}$$

where $$\triangle r_{k } = \sqrt{(x_{k}(t + \triangle t )-x_{k }(t))^{2} + (y_{k}(t + \triangle t)-y_{k }(t))^{2} + (z_{k}(t + \triangle t)-z_{k }(t))^{2} }$$;

10. $$x_{1 } = x_{1 }(t) = a_{11 }*t^{2} + b_{11 }*t + c_{11 }$$;

11. $$y_{1 } = y_{1 }(t) = a_{12 }*t^{2} + b_{12 }*t + c_{12 }$$;

12. $$z_{1 } = z_{1 }(t) = a_{13 }*t^{2} + b_{13 }*t + c_{13 }$$;

13. $$x_{2} = x_{2 }(t) = a_{21 }*t^{2} + b_{21 }*t + c_{21 }$$;

14. $$y_{2 } = y_{2 }(t) = a_{22 }*t^{2} + b_{22 }*t + c_{22 }$$;

15. $$z_{2 } = z_{2 }(t) = a_{23 }*t^{2} + b_{23 }*t + c_{23 }$$;

16. $$x_{3 } = x_{3 }(t) = a_{31 }*t^{2} + b_{31 }*t + c_{31 }$$;

17. $$y_{3 } = y_{3 }(t) = a_{32 }*t^{2} + b_{32 }*t + c_{32 }$$;

18. $$z_{3 } = z_{3 }(t) = a_{33 }*t^{2} + b_{33 }*t + c_{33 }$$.

Therefore, there are 27 (1a - 9a plus 1-18) system equations with 36 unknowns (variables) which helps to explain the rich diversity of possible orbits for the three-body problem... Of course, if we select the energy associated with each spatial component, then we have 27 system equations with 27 unknowns (variables).

And if equations, 10 - 18, are generally correct, then we have solved the three-body problem generally.

Dave Cole,

https://www.researchgate.net/profile/David_Cole29.
Guest

### Re: On a General Solution of the Three-Body Problem

Guest wrote:
Guest wrote:FYI: In our closed system, the total and constant Energy (E) = total Kinetic Energy (K) + total Gravitational Energy (U) of our three-body system.

We recall our system equations with regards to acceleration (a) due to gravitational energy:

1a. $$\frac{d^{2}x_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{x_{1 }-x_{2 }}{r_{12}^{3}} + m_{3 }* \frac{x_{1 }-x_{3 }}{r_{13}^{3}})$$;

2a. $$\frac{d^{2}y_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{y_{1 }-y_{2 }}{r_{12}^{3}} + m_{3 }* \frac{y_{1 }-y_{3 }}{r_{13}^{3}})$$;

3a. $$\frac{d^{2}z_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{z_{1 }-z_{2 }}{r_{12}^{3}} + m_{3 }* \frac{z_{1 }-z_{3 }}{r_{13}^{3}})$$;

4a. $$\frac{d^{2}x_{2 }}{dt^{2}} = -G* (m_{1 }* \frac{x_{2 }-x_{1 }}{r_{21}^{3}} + m_{3 }* \frac{x_{2 }-x_{3 }}{r_{23}^{3}})$$;

5a. $$\frac{d^{2}y_{2 }}{dt^{2}} = -G* ( m_{1 }* \frac{y_{2 }-y_{1 }}{r_{21}^{3}} + m_{3 }* \frac{y_{2 }-y_{3 }}{r_{23}^{3}})$$;

6a. $$\frac{d^{2}z_{2 }}{dt^{2}} = -G* ( m_{1 }* \frac{z_{2 }-z_{1 }}{r_{21}^{3}} + m_{3 }* \frac{z_{2 }-z_{3 }}{r_{23}^{3}})$$;

7a. $$\frac{d^{2}x_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{x_{3 }-x_{1 }}{r_{31}^{3}} + m_{2 }* \frac{x_{3 }-x_{2 }}{r_{32}^{3}})$$;

8a. $$\frac{d^{2}y_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{y_{3 }-y_{1 }}{r_{31}^{3}} + m_{2 }* \frac{y_{3 }-y_{2 }}{r_{32}^{3}})$$;

9a. $$\frac{d^{2}z_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{z_{3 }-z_{1 }}{r_{31}^{3}} + m_{2 }* \frac{z_{3 }-z_{2 }}{r_{32}^{3}})$$

with $$r_{ij} = \sqrt{(x_{i }-x_{j })^{2} + (y_{i }-y_{j })^{2} + (z_{i }-z_{j })^{2} }$$ where G is the gravitational constant.

Now, we generate our final system equations corresponding to the energy conservation law for our closed system:

1. $$.5m_{1 }*(\frac{dx_{1 }}{dt})^{2} + -G* m_{1 }*( m_{2 }* \frac{x_{1 }-x_{2 }}{r_{12}^{3}} + m_{3 }* \frac{x_{1 }-x_{3 }}{r_{13}^{3}})*\triangle r_{1 } =E_{x_{1 }}$$;

2. $$.5m_{1 }*(\frac{dy_{1 }}{dt})^{2} + -G* m_{1 }*( m_{2 }* \frac{y_{1 }-y_{2 }}{r_{12}^{3}} + m_{3 }* \frac{y_{1 }-y_{3 }}{r_{13}^{3}})*\triangle r_{1 } =E_{y_{1 }}$$;

3. $$.5m_{1 }*(\frac{dz_{1 }}{dt})^{2} + -G* m_{1 }*( m_{2 }* \frac{z_{1 }-z_{2 }}{r_{12}^{3}} + m_{3 }* \frac{z_{1 }-z_{3 }}{r_{13}^{3}})*\triangle r_{1 } =E_{z_{1 }}$$;

4. $$.5m_{2 }*(\frac{dx_{2 }}{dt})^{2} + -G* m_{2 }*( m_{1 }* \frac{x_{2 }-x_{1 }}{r_{21}^{3}} + m_{3 }* \frac{x_{2 }-x_{3 }}{r_{23}^{3}})*\triangle r_{2 } =E_{x_{2 }}$$;

5. $$.5m_{2}*(\frac{dy_{2 }}{dt})^{2} + -G* m_{2 }*( m_{2 }* \frac{y_{2 }-y_{1 }}{r_{21}^{3}} + m_{3 }* \frac{y_{2 }-y_{3 }}{r_{23}^{3}})*\triangle r_{2 } =E_{y_{2 }}$$;

6. $$.5m_{2 }*(\frac{dz_{2 }}{dt})^{2} + -G* m_{2 }*( m_{1 }* \frac{z_{2 }-z_{1 }}{r_{21}^{3}} + m_{3 }* \frac{z_{2 }-z_{3 }}{r_{23}^{3}})*\triangle r_{2 } =E_{z_{2 }}$$;

7. $$.5m_{3 }*(\frac{dx_{3 }}{dt})^{2} + -G* m_{3 }*( m_{1 }* \frac{x_{3 }-x_{1 }}{r_{31}^{3}} + m_{2 }* \frac{x_{3 }-x_{2 }}{r_{32}^{3}})*\triangle r_{3 } =E_{x_{3 }}$$;

8. $$.5m_{3 }*(\frac{dy_{3 }}{dt})^{2} + -G* m_{3 }*( m_{1 }* \frac{y_{3 }-y_{1 }}{r_{31}^{3}} + m_{2 }* \frac{y_{3 }-y_{2 }}{r_{32}^{3}})*\triangle r_{3 } =E_{y_{3 }}$$;

9. $$.5m_{3 }*(\frac{dz_{3 }}{dt})^{2} + -G* m_{3 }*( m_{1 }* \frac{z_{3 }-z_{1 }}{r_{31}^{3}} + m_{2 }* \frac{z_{3 }-z_{2 }}{r_{32}^{3}})*\triangle r_{3 } =E_{z_{3 }}$$

where $$\triangle r_{k } = \sqrt{(x_{k}(t + \triangle t )-x_{k }(t))^{2} + (y_{k}(t + \triangle t)-y_{k }(t))^{2} + (z_{k}(t + \triangle t)-z_{k }(t))^{2} }$$;

10. $$x_{1 } = x_{1 }(t) = a_{11 }*t^{2} + b_{11 }*t + c_{11 }$$;

11. $$y_{1 } = y_{1 }(t) = a_{12 }*t^{2} + b_{12 }*t + c_{12 }$$;

12. $$z_{1 } = z_{1 }(t) = a_{13 }*t^{2} + b_{13 }*t + c_{13 }$$;

13. $$x_{2} = x_{2 }(t) = a_{21 }*t^{2} + b_{21 }*t + c_{21 }$$;

14. $$y_{2 } = y_{2 }(t) = a_{22 }*t^{2} + b_{22 }*t + c_{22 }$$;

15. $$z_{2 } = z_{2 }(t) = a_{23 }*t^{2} + b_{23 }*t + c_{23 }$$;

16. $$x_{3 } = x_{3 }(t) = a_{31 }*t^{2} + b_{31 }*t + c_{31 }$$;

17. $$y_{3 } = y_{3 }(t) = a_{32 }*t^{2} + b_{32 }*t + c_{32 }$$;

18. $$z_{3 } = z_{3 }(t) = a_{33 }*t^{2} + b_{33 }*t + c_{33 }$$.

Therefore, there are 27 (1a - 9a plus 1-18) system equations with 36 unknowns (variables) which helps to explain the rich diversity of possible orbits for the three-body problem... Of course, if we select the energy associated with each spatial component, then we have 27 system equations with 27 unknowns (variables).

And if equations, 10 - 18, are generally correct, then we have solved the three-body problem generally.

Dave Cole,

https://www.researchgate.net/profile/David_Cole29.
Guest

### Re: On a General Solution of the Three-Body Problem

Remarks: $$a_{ij }$$ is an acceleration variable; $$b_{ij }$$ is a speed variable; and $$c_{ij }$$ is an initial position variable.

Whatever, energy (e.g. $$E_{x_{1 }}$$) selected for each spatial component (e.g. $$x_{1 }$$) must be consistent systemwise. And our system equations are generally difficult to solve...
Guest

### Re: On a General Solution of the Three-Body Problem

Guest wrote:
Guest wrote:
Guest wrote:FYI: In our closed system, the total and constant Energy (E) = total Kinetic Energy (K) + total Gravitational Energy (U) of our three-body system.

We recall our system equations with regards to acceleration (a) due to gravitational energy:

1a. $$\frac{d^{2}x_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{x_{1 }-x_{2 }}{r_{12}^{3}} + m_{3 }* \frac{x_{1 }-x_{3 }}{r_{13}^{3}})$$;

2a. $$\frac{d^{2}y_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{y_{1 }-y_{2 }}{r_{12}^{3}} + m_{3 }* \frac{y_{1 }-y_{3 }}{r_{13}^{3}})$$;

3a. $$\frac{d^{2}z_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{z_{1 }-z_{2 }}{r_{12}^{3}} + m_{3 }* \frac{z_{1 }-z_{3 }}{r_{13}^{3}})$$;

4a. $$\frac{d^{2}x_{2 }}{dt^{2}} = -G* (m_{1 }* \frac{x_{2 }-x_{1 }}{r_{21}^{3}} + m_{3 }* \frac{x_{2 }-x_{3 }}{r_{23}^{3}})$$;

5a. $$\frac{d^{2}y_{2 }}{dt^{2}} = -G* ( m_{1 }* \frac{y_{2 }-y_{1 }}{r_{21}^{3}} + m_{3 }* \frac{y_{2 }-y_{3 }}{r_{23}^{3}})$$;

6a. $$\frac{d^{2}z_{2 }}{dt^{2}} = -G* ( m_{1 }* \frac{z_{2 }-z_{1 }}{r_{21}^{3}} + m_{3 }* \frac{z_{2 }-z_{3 }}{r_{23}^{3}})$$;

7a. $$\frac{d^{2}x_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{x_{3 }-x_{1 }}{r_{31}^{3}} + m_{2 }* \frac{x_{3 }-x_{2 }}{r_{32}^{3}})$$;

8a. $$\frac{d^{2}y_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{y_{3 }-y_{1 }}{r_{31}^{3}} + m_{2 }* \frac{y_{3 }-y_{2 }}{r_{32}^{3}})$$;

9a. $$\frac{d^{2}z_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{z_{3 }-z_{1 }}{r_{31}^{3}} + m_{2 }* \frac{z_{3 }-z_{2 }}{r_{32}^{3}})$$

with $$r_{ij} = \sqrt{(x_{i }-x_{j })^{2} + (y_{i }-y_{j })^{2} + (z_{i }-z_{j })^{2} }$$ where G is the gravitational constant.

Now, we generate our final system equations corresponding to the energy conservation law for our closed system:

1. $$.5m_{1 }*(\frac{dx_{1 }}{dt})^{2} + -G* m_{1 }*( m_{2 }* \frac{x_{1 }-x_{2 }}{r_{12}^{3}} + m_{3 }* \frac{x_{1 }-x_{3 }}{r_{13}^{3}})*\triangle r_{1 } =E_{x_{1 }}$$;

2. $$.5m_{1 }*(\frac{dy_{1 }}{dt})^{2} + -G* m_{1 }*( m_{2 }* \frac{y_{1 }-y_{2 }}{r_{12}^{3}} + m_{3 }* \frac{y_{1 }-y_{3 }}{r_{13}^{3}})*\triangle r_{1 } =E_{y_{1 }}$$;

3. $$.5m_{1 }*(\frac{dz_{1 }}{dt})^{2} + -G* m_{1 }*( m_{2 }* \frac{z_{1 }-z_{2 }}{r_{12}^{3}} + m_{3 }* \frac{z_{1 }-z_{3 }}{r_{13}^{3}})*\triangle r_{1 } =E_{z_{1 }}$$;

4. $$.5m_{2 }*(\frac{dx_{2 }}{dt})^{2} + -G* m_{2 }*( m_{1 }* \frac{x_{2 }-x_{1 }}{r_{21}^{3}} + m_{3 }* \frac{x_{2 }-x_{3 }}{r_{23}^{3}})*\triangle r_{2 } =E_{x_{2 }}$$;

5. $$.5m_{2}*(\frac{dy_{2 }}{dt})^{2} + -G* m_{2 }*( m_{2 }* \frac{y_{2 }-y_{1 }}{r_{21}^{3}} + m_{3 }* \frac{y_{2 }-y_{3 }}{r_{23}^{3}})*\triangle r_{2 } =E_{y_{2 }}$$;

6. $$.5m_{2 }*(\frac{dz_{2 }}{dt})^{2} + -G* m_{2 }*( m_{1 }* \frac{z_{2 }-z_{1 }}{r_{21}^{3}} + m_{3 }* \frac{z_{2 }-z_{3 }}{r_{23}^{3}})*\triangle r_{2 } =E_{z_{2 }}$$;

7. $$.5m_{3 }*(\frac{dx_{3 }}{dt})^{2} + -G* m_{3 }*( m_{1 }* \frac{x_{3 }-x_{1 }}{r_{31}^{3}} + m_{2 }* \frac{x_{3 }-x_{2 }}{r_{32}^{3}})*\triangle r_{3 } =E_{x_{3 }}$$;

8. $$.5m_{3 }*(\frac{dy_{3 }}{dt})^{2} + -G* m_{3 }*( m_{1 }* \frac{y_{3 }-y_{1 }}{r_{31}^{3}} + m_{2 }* \frac{y_{3 }-y_{2 }}{r_{32}^{3}})*\triangle r_{3 } =E_{y_{3 }}$$;

9. $$.5m_{3 }*(\frac{dz_{3 }}{dt})^{2} + -G* m_{3 }*( m_{1 }* \frac{z_{3 }-z_{1 }}{r_{31}^{3}} + m_{2 }* \frac{z_{3 }-z_{2 }}{r_{32}^{3}})*\triangle r_{3 } =E_{z_{3 }}$$

where $$\triangle r_{k } = \sqrt{(x_{k}(t + \triangle t )-x_{k }(t))^{2} + (y_{k}(t + \triangle t)-y_{k }(t))^{2} + (z_{k}(t + \triangle t)-z_{k }(t))^{2} }$$;

10. $$x_{1 } = x_{1 }(t) = .5a_{11 }*t^{2} + b_{11 }*t + c_{11 }$$;

11. $$y_{1 } = y_{1 }(t) = .5a_{12 }*t^{2} + b_{12 }*t + c_{12 }$$;

12. $$z_{1 } = z_{1 }(t) = .5a_{13 }*t^{2} + b_{13 }*t + c_{13 }$$;

13. $$x_{2} = x_{2 }(t) = .5a_{21 }*t^{2} + b_{21 }*t + c_{21 }$$;

14. $$y_{2 } = y_{2 }(t) = .5a_{22 }*t^{2} + b_{22 }*t + c_{22 }$$;

15. $$z_{2 } = z_{2 }(t) = .5a_{23 }*t^{2} + b_{23 }*t + c_{23 }$$;

16. $$x_{3 } = x_{3 }(t) = .5a_{31 }*t^{2} + b_{31 }*t + c_{31 }$$;

17. $$y_{3 } = y_{3 }(t) = .5a_{32 }*t^{2} + b_{32 }*t + c_{32 }$$;

18. $$z_{3 } = z_{3 }(t) = .5a_{33 }*t^{2} + b_{33 }*t + c_{33 }$$.

Therefore, there are 27 (1a - 9a plus 1-18) system equations with 36 unknowns (variables) which helps to explain the rich diversity of possible orbits for the three-body problem... Of course, if we select the energy associated with each spatial component, then we have 27 system equations with 27 unknowns (variables).

And if equations, 10 - 18, are generally correct, then we have solved the three-body problem generally.

Dave Cole,

https://www.researchgate.net/profile/David_Cole29.
Guest

### Re: On a General Solution of the Three-Body Problem

Remarks: For the n-body problem where $$n \ge 3$$, we expect 9n equations with 12n unknowns (variables)... Right?

The investigation of the n-body problem is very important for learning physics at levels, for research, and for many applications (e.g. systems-modeling and prediction) in applied and theoretical physics as well as for advancing pure and applied mathematics... Please refer to relevant reference links in the previous posts for details.
Guest

### Re: On a General Solution of the Three-Body Problem

Guest wrote:Remarks: For the n-body problem where $$n \ge 3$$, we expect 9n equations with 12n unknowns (variables)... Right?

The investigation of the n-body problem is very important for learning physics at different levels, for research, and for many applications (e.g. systems-modeling and prediction) in applied and theoretical physics as well as for advancing pure and applied mathematics... Please refer to relevant reference links in the previous posts for details.
Guest

### Re: On a General Solution of the Three-Body Problem

Remark: The Imperial Rule and the Numbers Game:

Orbits may be stable or become unstable, and energy associated with each spatial component may change, but the total energy of our closed system must remain constant (imperial rule)! Right?
Guest

### Re: On a General Solution of the Three-Body Problem

On the Solutions of Stable Orbits for the Three-Body Problem (TBP) and Lyapunov's Second Method (L2M) for Stability:

We want to know how L2M helps us solve TBP and much more...

'Important Question about the Lyapunov's Second Method for Stability',

Guest

### Re: On a General Solution of the Three-Body Problem

An Update:

"Simple seeks simplest solution." -- Dave.

In our closed system, the total and constant Energy (E) = total Kinetic Energy (K) + total Gravitational Energy (U) of our three-body system.

We recall our system equations with regards to acceleration (a) due to gravitational energy:

1a. $$\frac{d^{2}x_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{x_{1 }-x_{2 }}{r_{12}^{3}} + m_{3 }* \frac{x_{1 }-x_{3 }}{r_{13}^{3}})$$;

2a. $$\frac{d^{2}y_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{y_{1 }-y_{2 }}{r_{12}^{3}} + m_{3 }* \frac{y_{1 }-y_{3 }}{r_{13}^{3}})$$;

3a. $$\frac{d^{2}z_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{z_{1 }-z_{2 }}{r_{12}^{3}} + m_{3 }* \frac{z_{1 }-z_{3 }}{r_{13}^{3}})$$;

4a. $$\frac{d^{2}x_{2 }}{dt^{2}} = -G* (m_{1 }* \frac{x_{2 }-x_{1 }}{r_{21}^{3}} + m_{3 }* \frac{x_{2 }-x_{3 }}{r_{23}^{3}})$$;

5a. $$\frac{d^{2}y_{2 }}{dt^{2}} = -G* ( m_{1 }* \frac{y_{2 }-y_{1 }}{r_{21}^{3}} + m_{3 }* \frac{y_{2 }-y_{3 }}{r_{23}^{3}})$$;

6a. $$\frac{d^{2}z_{2 }}{dt^{2}} = -G* ( m_{1 }* \frac{z_{2 }-z_{1 }}{r_{21}^{3}} + m_{3 }* \frac{z_{2 }-z_{3 }}{r_{23}^{3}})$$;

7a. $$\frac{d^{2}x_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{x_{3 }-x_{1 }}{r_{31}^{3}} + m_{2 }* \frac{x_{3 }-x_{2 }}{r_{32}^{3}})$$;

8a. $$\frac{d^{2}y_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{y_{3 }-y_{1 }}{r_{31}^{3}} + m_{2 }* \frac{y_{3 }-y_{2 }}{r_{32}^{3}})$$;

9a. $$\frac{d^{2}z_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{z_{3 }-z_{1 }}{r_{31}^{3}} + m_{2 }* \frac{z_{3 }-z_{2 }}{r_{32}^{3}})$$

with $$r_{ij} = \sqrt{(x_{i }-x_{j })^{2} + (y_{i }-y_{j })^{2} + (z_{i }-z_{j })^{2} }$$ where G is the gravitational constant.

Now, we generate our final system equations corresponding to the energy conservation law for our closed system:

1. $$\frac{1}{2} * m_{1 }*(\frac{dx_{1 }}{dt})^{2} - G* m_{1 }*( m_{2 }* \frac{x_{1 }-x_{2 }}{r_{12}^{3}} + m_{3 }* \frac{x_{1 }-x_{3 }}{r_{13}^{3}})*\triangle r_{1 } =E_{x_{1 }}$$;

2. $$\frac{1}{2} * m_{1 }*(\frac{dy_{1 }}{dt})^{2} - G* m_{1 }*( m_{2 }* \frac{y_{1 }-y_{2 }}{r_{12}^{3}} + m_{3 }* \frac{y_{1 }-y_{3 }}{r_{13}^{3}})*\triangle r_{1 } =E_{y_{1 }}$$;

3. $$\frac{1}{2} * m_{1 }*(\frac{dz_{1 }}{dt})^{2} - G* m_{1 }*( m_{2 }* \frac{z_{1 }-z_{2 }}{r_{12}^{3}} + m_{3 }* \frac{z_{1 }-z_{3 }}{r_{13}^{3}})*\triangle r_{1 } =E_{z_{1 }}$$;

4. $$\frac{1}{2} * m_{2 }*(\frac{dx_{2 }}{dt})^{2} - G* m_{2 }*( m_{1 }* \frac{x_{2 }-x_{1 }}{r_{21}^{3}} + m_{3 }* \frac{x_{2 }-x_{3 }}{r_{23}^{3}})*\triangle r_{2 } =E_{x_{2 }}$$;

5. $$\frac{1}{2} * m_{2}*(\frac{dy_{2 }}{dt})^{2} - G* m_{2 }*( m_{2 }* \frac{y_{2 }-y_{1 }}{r_{21}^{3}} + m_{3 }* \frac{y_{2 }-y_{3 }}{r_{23}^{3}})*\triangle r_{2 } =E_{y_{2 }}$$;

6. $$\frac{1}{2} * m_{2 }*(\frac{dz_{2 }}{dt})^{2} - G* m_{2 }*( m_{1 }* \frac{z_{2 }-z_{1 }}{r_{21}^{3}} + m_{3 }* \frac{z_{2 }-z_{3 }}{r_{23}^{3}})*\triangle r_{2 } =E_{z_{2 }}$$;

7. $$\frac{1}{2} * m_{3 }*(\frac{dx_{3 }}{dt})^{2} - G* m_{3 }*( m_{1 }* \frac{x_{3 }-x_{1 }}{r_{31}^{3}} + m_{2 }* \frac{x_{3 }-x_{2 }}{r_{32}^{3}})*\triangle r_{3 } =E_{x_{3 }}$$;

8. $$\frac{1}{2} * m_{3 }*(\frac{dy_{3 }}{dt})^{2} - G* m_{3 }*( m_{1 }* \frac{y_{3 }-y_{1 }}{r_{31}^{3}} + m_{2 }* \frac{y_{3 }-y_{2 }}{r_{32}^{3}})*\triangle r_{3 } =E_{y_{3 }}$$;

9. $$\frac{1}{2} * m_{3 }*(\frac{dz_{3 }}{dt})^{2} - G* m_{3 }*( m_{1 }* \frac{z_{3 }-z_{1 }}{r_{31}^{3}} + m_{2 }* \frac{z_{3 }-z_{2 }}{r_{32}^{3}})*\triangle r_{3 } =E_{z_{3 }}$$

where $$\triangle r_{k } = \sqrt{(x_{k}(t + \triangle t )-x_{k }(t))^{2} + (y_{k}(t + \triangle t)-y_{k }(t))^{2} + (z_{k}(t + \triangle t)-z_{k }(t))^{2} }$$.

Next, we list the important position functions corresponding to our spatial components:

10. $$x_{1 } = x_{1 }(t) = \frac{1}{2} * a_{11 }*t^{2} + b_{11 }*t + c_{11 }$$;

11. $$y_{1 } = y_{1 }(t) = \frac{1}{2} * a_{12 }*t^{2} + b_{12 }*t + c_{12 }$$;

12. $$z_{1 } = z_{1 }(t) = \frac{1}{2} * a_{13 }*t^{2} + b_{13 }*t + c_{13 }$$;

13. $$x_{2} = x_{2 }(t) = \frac{1}{2} * a_{21 }*t^{2} + b_{21 }*t + c_{21 }$$;

14. $$y_{2 } = y_{2 }(t) = \frac{1}{2} * a_{22 }*t^{2} + b_{22 }*t + c_{22 }$$;

15. $$z_{2 } = z_{2 }(t) = \frac{1}{2} * a_{23 }*t^{2} + b_{23 }*t + c_{23 }$$;

16. $$x_{3 } = x_{3 }(t) = \frac{1}{2} * a_{31 }*t^{2} + b_{31 }*t + c_{31 }$$;

17. $$y_{3 } = y_{3 }(t) = \frac{1}{2} * a_{32 }*t^{2} + b_{32 }*t + c_{32 }$$;

18. $$z_{3 } = z_{3 }(t) = \frac{1}{2} * a_{33 }*t^{2} + b_{33 }*t + c_{33 }$$

where $$a_{ij }$$ is the acceleration variable; $$b_{ij }$$ is the speed variable; $$c_{ij }$$ is the initial position variable.

Therefore, there are 27 (1a - 9a plus 1-18) system equations with 36 unknowns (variables) which helps to explain the rich diversity of possible orbits for the three-body problem... Of course, if we select the energy associated with each spatial component, then we have 27 system equations with 27 unknowns (variables).

And if the position functions, 10 - 18, are generally correct, then we have solved the three-body problem generally.

David Cole,

https://www.researchgate.net/profile/David_Cole29.

Go Blue!
Guest

### Re: On a General Solution of the Three-Body Problem

Guest wrote:An Update:

"Simple seeks simplest (best) solution." -- Dave.

In our closed system, the total and constant Energy (E) = total Kinetic Energy (K) + total Gravitational Energy (U) of our three-body system.

We recall our system equations with regards to acceleration (a) due to gravitational energy:

1a. $$\frac{d^{2}x_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{x_{1 }-x_{2 }}{r_{12}^{3}} + m_{3 }* \frac{x_{1 }-x_{3 }}{r_{13}^{3}})$$;

2a. $$\frac{d^{2}y_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{y_{1 }-y_{2 }}{r_{12}^{3}} + m_{3 }* \frac{y_{1 }-y_{3 }}{r_{13}^{3}})$$;

3a. $$\frac{d^{2}z_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{z_{1 }-z_{2 }}{r_{12}^{3}} + m_{3 }* \frac{z_{1 }-z_{3 }}{r_{13}^{3}})$$;

4a. $$\frac{d^{2}x_{2 }}{dt^{2}} = -G* (m_{1 }* \frac{x_{2 }-x_{1 }}{r_{21}^{3}} + m_{3 }* \frac{x_{2 }-x_{3 }}{r_{23}^{3}})$$;

5a. $$\frac{d^{2}y_{2 }}{dt^{2}} = -G* ( m_{1 }* \frac{y_{2 }-y_{1 }}{r_{21}^{3}} + m_{3 }* \frac{y_{2 }-y_{3 }}{r_{23}^{3}})$$;

6a. $$\frac{d^{2}z_{2 }}{dt^{2}} = -G* ( m_{1 }* \frac{z_{2 }-z_{1 }}{r_{21}^{3}} + m_{3 }* \frac{z_{2 }-z_{3 }}{r_{23}^{3}})$$;

7a. $$\frac{d^{2}x_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{x_{3 }-x_{1 }}{r_{31}^{3}} + m_{2 }* \frac{x_{3 }-x_{2 }}{r_{32}^{3}})$$;

8a. $$\frac{d^{2}y_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{y_{3 }-y_{1 }}{r_{31}^{3}} + m_{2 }* \frac{y_{3 }-y_{2 }}{r_{32}^{3}})$$;

9a. $$\frac{d^{2}z_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{z_{3 }-z_{1 }}{r_{31}^{3}} + m_{2 }* \frac{z_{3 }-z_{2 }}{r_{32}^{3}})$$

with $$r_{ij} = \sqrt{(x_{i }-x_{j })^{2} + (y_{i }-y_{j })^{2} + (z_{i }-z_{j })^{2} }$$ where G is the gravitational constant.

Now, we generate our final system equations corresponding to the energy conservation law for our closed system:

1. $$\frac{1}{2} * m_{1 }*(\frac{dx_{1 }}{dt})^{2} - G* m_{1 }*( m_{2 }* \frac{x_{1 }-x_{2 }}{r_{12}^{3}} + m_{3 }* \frac{x_{1 }-x_{3 }}{r_{13}^{3}})*\triangle r_{1 } =E_{x_{1 }}$$;

2. $$\frac{1}{2} * m_{1 }*(\frac{dy_{1 }}{dt})^{2} - G* m_{1 }*( m_{2 }* \frac{y_{1 }-y_{2 }}{r_{12}^{3}} + m_{3 }* \frac{y_{1 }-y_{3 }}{r_{13}^{3}})*\triangle r_{1 } =E_{y_{1 }}$$;

3. $$\frac{1}{2} * m_{1 }*(\frac{dz_{1 }}{dt})^{2} - G* m_{1 }*( m_{2 }* \frac{z_{1 }-z_{2 }}{r_{12}^{3}} + m_{3 }* \frac{z_{1 }-z_{3 }}{r_{13}^{3}})*\triangle r_{1 } =E_{z_{1 }}$$;

4. $$\frac{1}{2} * m_{2 }*(\frac{dx_{2 }}{dt})^{2} - G* m_{2 }*( m_{1 }* \frac{x_{2 }-x_{1 }}{r_{21}^{3}} + m_{3 }* \frac{x_{2 }-x_{3 }}{r_{23}^{3}})*\triangle r_{2 } =E_{x_{2 }}$$;

5. $$\frac{1}{2} * m_{2}*(\frac{dy_{2 }}{dt})^{2} - G* m_{2 }*( m_{2 }* \frac{y_{2 }-y_{1 }}{r_{21}^{3}} + m_{3 }* \frac{y_{2 }-y_{3 }}{r_{23}^{3}})*\triangle r_{2 } =E_{y_{2 }}$$;

6. $$\frac{1}{2} * m_{2 }*(\frac{dz_{2 }}{dt})^{2} - G* m_{2 }*( m_{1 }* \frac{z_{2 }-z_{1 }}{r_{21}^{3}} + m_{3 }* \frac{z_{2 }-z_{3 }}{r_{23}^{3}})*\triangle r_{2 } =E_{z_{2 }}$$;

7. $$\frac{1}{2} * m_{3 }*(\frac{dx_{3 }}{dt})^{2} - G* m_{3 }*( m_{1 }* \frac{x_{3 }-x_{1 }}{r_{31}^{3}} + m_{2 }* \frac{x_{3 }-x_{2 }}{r_{32}^{3}})*\triangle r_{3 } =E_{x_{3 }}$$;

8. $$\frac{1}{2} * m_{3 }*(\frac{dy_{3 }}{dt})^{2} - G* m_{3 }*( m_{1 }* \frac{y_{3 }-y_{1 }}{r_{31}^{3}} + m_{2 }* \frac{y_{3 }-y_{2 }}{r_{32}^{3}})*\triangle r_{3 } =E_{y_{3 }}$$;

9. $$\frac{1}{2} * m_{3 }*(\frac{dz_{3 }}{dt})^{2} - G* m_{3 }*( m_{1 }* \frac{z_{3 }-z_{1 }}{r_{31}^{3}} + m_{2 }* \frac{z_{3 }-z_{2 }}{r_{32}^{3}})*\triangle r_{3 } =E_{z_{3 }}$$

where $$\triangle r_{k } = \sqrt{(x_{k}(t + \triangle t )-x_{k }(t))^{2} + (y_{k}(t + \triangle t)-y_{k }(t))^{2} + (z_{k}(t + \triangle t)-z_{k }(t))^{2} }$$.

Next, we list the important position functions corresponding to our spatial components:

10. $$x_{1 } = x_{1 }(t) = \frac{1}{2} * a_{11 }*t^{2} + b_{11 }*t + c_{11 }$$;

11. $$y_{1 } = y_{1 }(t) = \frac{1}{2} * a_{12 }*t^{2} + b_{12 }*t + c_{12 }$$;

12. $$z_{1 } = z_{1 }(t) = \frac{1}{2} * a_{13 }*t^{2} + b_{13 }*t + c_{13 }$$;

13. $$x_{2} = x_{2 }(t) = \frac{1}{2} * a_{21 }*t^{2} + b_{21 }*t + c_{21 }$$;

14. $$y_{2 } = y_{2 }(t) = \frac{1}{2} * a_{22 }*t^{2} + b_{22 }*t + c_{22 }$$;

15. $$z_{2 } = z_{2 }(t) = \frac{1}{2} * a_{23 }*t^{2} + b_{23 }*t + c_{23 }$$;

16. $$x_{3 } = x_{3 }(t) = \frac{1}{2} * a_{31 }*t^{2} + b_{31 }*t + c_{31 }$$;

17. $$y_{3 } = y_{3 }(t) = \frac{1}{2} * a_{32 }*t^{2} + b_{32 }*t + c_{32 }$$;

18. $$z_{3 } = z_{3 }(t) = \frac{1}{2} * a_{33 }*t^{2} + b_{33 }*t + c_{33 }$$

where $$a_{ij }$$ is the acceleration variable; $$b_{ij }$$ is the speed variable; $$c_{ij }$$ is the initial position variable.

Therefore, there are 27 (1a - 9a plus 1-18) system equations with 36 unknowns (independent variables) which helps to explain the rich diversity of possible orbits for the three-body problem... Of course, if we select the energy associated with each spatial component, then we have 27 system equations with 27 unknowns (independent variables).

And if the position functions, 10 - 18, are generally correct, then we have solved the three-body problem generally.

David Cole,

https://www.researchgate.net/profile/David_Cole29.

Go Blue!

Some Computations:

$$\frac{d^{2}x_{1 }}{dt^{2}} = a_{11 }$$, $$\frac{d^{2}y_{1 }}{dt^{2}} = a_{12 }$$, $$\frac{d^{2}z_{1 }}{dt^{2}} = a_{13 }$$;

$$\frac{d^{2}x_{2 }}{dt^{2}} = a_{21 }$$, $$\frac{d^{2}y_{2 }}{dt^{2}} = a_{22 }$$, $$\frac{d^{2}z_{2 }}{dt^{2}} = a_{23 }$$;

$$\frac{d^{2}x_{3 }}{dt^{2}} = a_{31 }$$, $$\frac{d^{2}y_{3 }}{dt^{2}} = a_{32 }$$, $$\frac{d^{2}z_{3 }}{dt^{2}} = a_{33 }$$.

$$\frac{dx_{1 }}{dt} = a_{11 } * t + b_{11 }$$, $$\frac{dy_{1 }}{dt} = a_{12 } * t + b_{12 }$$, $$\frac{dz_{1 }}{dt} = a_{13 } * t + b_{13 }$$;

$$\frac{dx_{2 }}{dt} = a_{21 } * t + b_{21 }$$, $$\frac{dy_{2 }}{dt} = a_{22 } * t + b_{22 }$$, $$\frac{dz_{2 }}{dt} = a_{23 } * t + b_{23 }$$;

$$\frac{dx_{3 }}{dt} = a_{31 } * t + b_{31 }$$, $$\frac{dy_{3 }}{dt} = a_{32 } * t + b_{32 }$$, $$\frac{dz_{3 }}{dt} = a_{33 } * t + b_{33 }$$.
Guest

### Re: On a General Solution of the Three-Body Problem

Some Computations:

1. $$\frac{1}{2} * m_{1 }*( a_{11 } * t + b_{11 })^{2} - m_{1 } * a_{11 } * \triangle r_{1 } =E_{x_{1 }}$$;

2. $$\frac{1}{2} * m_{1 }*( a_{12 } * t + b_{12 })^{2} - m_{1 } * a_{12 } * \triangle r_{1 } =E_{y_{1 }}$$;

3. $$\frac{1}{2} * m_{1 }*( a_{13 } * t + b_{13 })^{2} - m_{1 } * a_{13 } * \triangle r_{1 } =E_{z_{1 }}$$;

4. $$\frac{1}{2} * m_{2 }*( a_{21 } * t + b_{21 })^{2} - m_{2 } * a_{21 } * \triangle r_{2 } =E_{x_{2 }}$$;

5. $$\frac{1}{2} * m_{2 }*( a_{22 } * t + b_{22 })^{2} - m_{2 } * a_{22 } * \triangle r_{2 } =E_{y_{2}}$$;

6. $$\frac{1}{2} * m_{2 }*( a_{23 } * t + b_{23 })^{2} - m_{2 } * a_{23} * \triangle r_{2 } =E_{z_{2 }}$$;

7. $$\frac{1}{2} * m_{3 }*( a_{31 } * t + b_{31 })^{2} - m_{3 } * a_{31 } * \triangle r_{3 } =E_{x_{3 }}$$;

8. $$\frac{1}{2} * m_{3 }*( a_{32 } * t + b_{32 })^{2} - m_{3 } * a_{32 } * \triangle r_{3} =E_{y_{3 }}$$;

9. $$\frac{1}{2} * m_{3 }*( a_{33 } * t + b_{33 })^{2} - m_{3 } * a_{33 } * \triangle r_{3 } =E_{z_{3 }}$$;

where $$\triangle r_{k } = \sqrt{(x_{k}(t + \triangle t )-x_{k }(t))^{2} + (y_{k}(t + \triangle t)-y_{k }(t))^{2} + (z_{k}(t + \triangle t)-z_{k }(t))^{2} }$$.
Guest

### Re: On a General Solution of the Three-Body Problem

FYI: E is the total energy for our three-body system, and it must remain constant while the energy associated with each spatial component may vary.

$$E = E_{x_{1 }} + E_{y_{1 }} + E_{z_{1 }} + E_{x_{2 }} + E_{y_{2 }} + E_{z_{2 }} + E_{x_{3 }} + E_{y_{3}} + E_{z_{3}}$$.
Guest

### Re: On a General Solution of the Three-Body Problem

Guest wrote:FYI: E is the total energy for our three-body system, and it must remain constant while the energy associated with each spatial component may vary.

$$E = E_{x_{1 }} + E_{y_{1 }} + E_{z_{1 }} + E_{x_{2 }} + E_{y_{2 }} + E_{z_{2 }} + E_{x_{3 }} + E_{y_{3}} + E_{z_{3}}$$.

FYI: The Important Noether's Theorem is applicable here.

"Noether's theorem states that every differentiable symmetry of the action of a physical system has a corresponding conservation law...",

https://en.wikipedia.org/wiki/Noether%27s_theorem#Example_1:_Conservation_of_energy.

Therefore, we expect symmetrical orbits in our solutions to the three-body problem.
Guest

### Re: On a General Solution of the Three-Body Problem

FYI: 'Weird Orbits - the three-body problem',

Guest

### Re: On a General Solution of the Three-Body Problem

FYI: '3-Body Problem - Periodic Solutions',

Guest

### Re: On a General Solution of the Three-Body Problem

Guest wrote:Some Computations:

1. $$\frac{1}{2} * m_{1 }*( a_{11 } * t + b_{11 })^{2} - m_{1 } * a_{11 } * \triangle r_{1 } =E_{x_{1 }}$$;

2. $$\frac{1}{2} * m_{1 }*( a_{12 } * t + b_{12 })^{2} - m_{1 } * a_{12 } * \triangle r_{1 } =E_{y_{1 }}$$;

3. $$\frac{1}{2} * m_{1 }*( a_{13 } * t + b_{13 })^{2} - m_{1 } * a_{13 } * \triangle r_{1 } =E_{z_{1 }}$$;

4. $$\frac{1}{2} * m_{2 }*( a_{21 } * t + b_{21 })^{2} - m_{2 } * a_{21 } * \triangle r_{2 } =E_{x_{2 }}$$;

5. $$\frac{1}{2} * m_{2 }*( a_{22 } * t + b_{22 })^{2} - m_{2 } * a_{22 } * \triangle r_{2 } =E_{y_{2}}$$;

6. $$\frac{1}{2} * m_{2 }*( a_{23 } * t + b_{23 })^{2} - m_{2 } * a_{23} * \triangle r_{2 } =E_{z_{2 }}$$;

7. $$\frac{1}{2} * m_{3 }*( a_{31 } * t + b_{31 })^{2} - m_{3 } * a_{31 } * \triangle r_{3 } =E_{x_{3 }}$$;

8. $$\frac{1}{2} * m_{3 }*( a_{32 } * t + b_{32 })^{2} - m_{3 } * a_{32 } * \triangle r_{3} =E_{y_{3 }}$$;

9. $$\frac{1}{2} * m_{3 }*( a_{33 } * t + b_{33 })^{2} - m_{3 } * a_{33 } * \triangle r_{3 } =E_{z_{3 }}$$;

where $$\triangle r_{k } = \sqrt{(x_{k}(t + \triangle t )-x_{k }(t))^{2} + (y_{k}(t + \triangle t)-y_{k }(t))^{2} + (z_{k}(t + \triangle t)-z_{k }(t))^{2} }$$.

Hmm. We are doubtful about equations, 1 - 9, above. The value, $$\triangle r_{k }$$, seems incorrect (too big or too small or inexact) for equations, 1-9. And we have more doubts too.
Guest

### Re: On a General Solution of the Three-Body Problem

An Update:

Some Computations:

1. $$\frac{1}{2} * m_{1 }*( a_{11 } * t + b_{11 })^{2} - m_{1 } * a_{11 } * |x_{1}( t + \triangle t) - x_{1}(t)|$$;

2. $$\frac{1}{2} * m_{1 }*( a_{12 } * t + b_{12 })^{2} - m_{1 } * a_{12 } * |y_{1}( t + \triangle t) -y_{1}(t)|$$;

3. $$\frac{1}{2} * m_{1 }*( a_{13 } * t + b_{13 })^{2} - m_{1 } * a_{13 } * |z_{1}( t + \triangle t) - z_{1}(t)|$$;

4. $$\frac{1}{2} * m_{2 }*( a_{21 } * t + b_{21 })^{2} - m_{2 } * a_{21 } * |x_{2}( t + \triangle t) - x_{2}(t)|$$;

5. $$\frac{1}{2} * m_{2 }*( a_{22 } * t + b_{22 })^{2} - m_{2 } * a_{22 } * |y_{2}( t + \triangle t) -y_{2}(t)|$$;

6. $$\frac{1}{2} * m_{2 }*( a_{23 } * t + b_{23 })^{2} - m_{2 } * a_{23} * |z_{2}( t + \triangle t) - z_{2}(t)|$$;

7. $$\frac{1}{2} * m_{3 }*( a_{31 } * t + b_{31 })^{2} - m_{3 } * a_{31 } * |x_{3}( t + \triangle t) - x_{3}(t)|$$;

8. $$\frac{1}{2} * m_{3 }*( a_{32 } * t + b_{32 })^{2} - m_{3 } * a_{32 } * |y_{3}( t + \triangle t) - y_{3}(t)|$$;

9. $$\frac{1}{2} * m_{3 }*( a_{33 } * t + b_{33 })^{2} - m_{3 } * a_{33 } * |z_{3}( t + \triangle t) - z_{3}(t)|$$.
Guest

### Re: On a General Solution of the Three-Body Problem

Guest wrote:An Update:

Some Computations:

1. $$\frac{1}{2} * m_{1 }*( a_{11 } * t + b_{11 })^{2} - m_{1 } * a_{11 } * |x_{1}( t + \triangle t) - x_{1}(t)|= E_{x_{1}}$$;

2. $$\frac{1}{2} * m_{1 }*( a_{12 } * t + b_{12 })^{2} - m_{1 } * a_{12 } * |y_{1}( t + \triangle t) -y_{1}(t)|= E_{y_{1}}$$;

3. $$\frac{1}{2} * m_{1 }*( a_{13 } * t + b_{13 })^{2} - m_{1 } * a_{13 } * |z_{1}( t + \triangle t) - z_{1}(t)|= E_{z_{1}}$$;

4. $$\frac{1}{2} * m_{2 }*( a_{21 } * t + b_{21 })^{2} - m_{2 } * a_{21 } * |x_{2}( t + \triangle t) - x_{2}(t)|= E_{x_{2}}$$;

5. $$\frac{1}{2} * m_{2 }*( a_{22 } * t + b_{22 })^{2} - m_{2 } * a_{22 } * |y_{2}( t + \triangle t) -y_{2}(t)|= E_{y_{2}}$$;

6. $$\frac{1}{2} * m_{2 }*( a_{23 } * t + b_{23 })^{2} - m_{2 } * a_{23} * |z_{2}( t + \triangle t) - z_{2}(t)|= E_{z_{2}}$$;

7. $$\frac{1}{2} * m_{3 }*( a_{31 } * t + b_{31 })^{2} - m_{3 } * a_{31 } * |x_{3}( t + \triangle t) - x_{3}(t)|= E_{x_{3}}$$;

8. $$\frac{1}{2} * m_{3 }*( a_{32 } * t + b_{32 })^{2} - m_{3 } * a_{32 } * |y_{3}( t + \triangle t) - y_{3}(t)|= E_{y_{3}}$$;

9. $$\frac{1}{2} * m_{3 }*( a_{33 } * t + b_{33 })^{2} - m_{3 } * a_{33 } * |z_{3}( t + \triangle t) - z_{3}(t)|= E_{z_{3}}$$.
Guest

### Re: On a General Solution of the Three-Body Problem

An Update:

"Simple seeks simplest (best) solution." -- Dave.

In our closed system, the total and constant Energy (E) = total Kinetic Energy (K) + total Gravitational Energy (U) of our three-body system.

We recall our system equations with regards to acceleration (a) due to gravitational energy:

1a. $$\frac{d^{2}x_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{x_{1 }-x_{2 }}{r_{12}^{3}} + m_{3 }* \frac{x_{1 }-x_{3 }}{r_{13}^{3}})$$;

2a. $$\frac{d^{2}y_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{y_{1 }-y_{2 }}{r_{12}^{3}} + m_{3 }* \frac{y_{1 }-y_{3 }}{r_{13}^{3}})$$;

3a. $$\frac{d^{2}z_{1 }}{dt^{2}} = -G* ( m_{2 }* \frac{z_{1 }-z_{2 }}{r_{12}^{3}} + m_{3 }* \frac{z_{1 }-z_{3 }}{r_{13}^{3}})$$;

4a. $$\frac{d^{2}x_{2 }}{dt^{2}} = -G* (m_{1 }* \frac{x_{2 }-x_{1 }}{r_{21}^{3}} + m_{3 }* \frac{x_{2 }-x_{3 }}{r_{23}^{3}})$$;

5a. $$\frac{d^{2}y_{2 }}{dt^{2}} = -G* ( m_{1 }* \frac{y_{2 }-y_{1 }}{r_{21}^{3}} + m_{3 }* \frac{y_{2 }-y_{3 }}{r_{23}^{3}})$$;

6a. $$\frac{d^{2}z_{2 }}{dt^{2}} = -G* ( m_{1 }* \frac{z_{2 }-z_{1 }}{r_{21}^{3}} + m_{3 }* \frac{z_{2 }-z_{3 }}{r_{23}^{3}})$$;

7a. $$\frac{d^{2}x_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{x_{3 }-x_{1 }}{r_{31}^{3}} + m_{2 }* \frac{x_{3 }-x_{2 }}{r_{32}^{3}})$$;

8a. $$\frac{d^{2}y_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{y_{3 }-y_{1 }}{r_{31}^{3}} + m_{2 }* \frac{y_{3 }-y_{2 }}{r_{32}^{3}})$$;

9a. $$\frac{d^{2}z_{3 }}{dt^{2}} = -G* ( m_{1 }* \frac{z_{3 }-z_{1 }}{r_{31}^{3}} + m_{2 }* \frac{z_{3 }-z_{2 }}{r_{32}^{3}})$$

with $$r_{ij} = \sqrt{(x_{i }-x_{j })^{2} + (y_{i }-y_{j })^{2} + (z_{i }-z_{j })^{2} }$$ where G is the gravitational constant.

Now, we generate our final system equations corresponding to the energy conservation law for our closed system:

1. $$\frac{1}{2} * m_{1 }*(\frac{dx_{1 }}{dt})^{2} - G* m_{1 }*( m_{2 }* \frac{x_{1 }-x_{2 }}{r_{12}^{3}} + m_{3 }* \frac{x_{1 }-x_{3 }}{r_{13}^{3}}) * |x_{1}( t + \triangle t) - x_{1}(t)| =E_{x_{1 }}$$;

2. $$\frac{1}{2} * m_{1 }*(\frac{dy_{1 }}{dt})^{2} - G* m_{1 }*( m_{2 }* \frac{y_{1 }-y_{2 }}{r_{12}^{3}} + m_{3 }* \frac{y_{1 }-y_{3 }}{r_{13}^{3}})* |y_{1}( t + \triangle t) - y_{1}(t)|= E_{y_{1}}$$;

3. $$\frac{1}{2} * m_{1 }*(\frac{dz_{1 }}{dt})^{2} - G* m_{1 }*( m_{2 }* \frac{z_{1 }-z_{2 }}{r_{12}^{3}} + m_{3 }* \frac{z_{1 }-z_{3 }}{r_{13}^{3}} * |z_{1}( t + \triangle t) - z_{1}(t)|= E_{z_{1}}$$;

4. $$\frac{1}{2} * m_{2 }*(\frac{dx_{2 }}{dt})^{2} - G* m_{2 }*( m_{1 }* \frac{x_{2 }-x_{1 }}{r_{21}^{3}} + m_{3 }* \frac{x_{2 }-x_{3 }}{r_{23}^{3}}) * |x_{2}( t + \triangle t) - x_{2}(t)|= E_{x_{2}}$$;

5. $$\frac{1}{2} * m_{2}*(\frac{dy_{2 }}{dt})^{2} - G* m_{2 }*( m_{2 }* \frac{y_{2 }-y_{1 }}{r_{21}^{3}} + m_{3 }* \frac{y_{2 }-y_{3 }}{r_{23}^{3}}) * |y_{2}( t + \triangle t) - y_{2}(t)|= E_{y_{2}}$$;

6. $$\frac{1}{2} * m_{2 }*(\frac{dz_{2 }}{dt})^{2} - G* m_{2 }*( m_{1 }* \frac{z_{2 }-z_{1 }}{r_{21}^{3}} + m_{3 }* \frac{z_{2 }-z_{3 }}{r_{23}^{3}}) * |z_{2}( t + \triangle t) - z_{2}(t)|= E_{z_{2}}$$;

7. $$\frac{1}{2} * m_{3 }*(\frac{dx_{3 }}{dt})^{2} - G* m_{3 }*( m_{1 }* \frac{x_{3 }-x_{1 }}{r_{31}^{3}} + m_{2 }* \frac{x_{3 }-x_{2 }}{r_{32}^{3}}) * |x_{3}( t + \triangle t) - x_{3}(t)|= E_{x_{3}}$$;

8. $$\frac{1}{2} * m_{3 }*(\frac{dy_{3 }}{dt})^{2} - G* m_{3 }*( m_{1 }* \frac{y_{3 }-y_{1 }}{r_{31}^{3}} + m_{2 }* \frac{y_{3 }-y_{2 }}{r_{32}^{3}}) * y_{3}( t + \triangle t) - y_{3}(t)|= E_{y_{3}}$$;

9. $$\frac{1}{2} * m_{3 }*(\frac{dz_{3 }}{dt})^{2} - G* m_{3 }*( m_{1 }* \frac{z_{3 }-z_{1 }}{r_{31}^{3}} + m_{2 }* \frac{z_{3 }-z_{2 }}{r_{32}^{3}}) * |z_{3}( t + \triangle t) - z_{3}(t)|= E_{z_{3}}$$.

Next, we list the important position functions corresponding to our spatial components:

10. $$x_{1 } = x_{1 }(t) = \frac{1}{2} * a_{11 }*t^{2} + b_{11 }*t + c_{11 }$$;

11. $$y_{1 } = y_{1 }(t) = \frac{1}{2} * a_{12 }*t^{2} + b_{12 }*t + c_{12 }$$;

12. $$z_{1 } = z_{1 }(t) = \frac{1}{2} * a_{13 }*t^{2} + b_{13 }*t + c_{13 }$$;

13. $$x_{2} = x_{2 }(t) = \frac{1}{2} * a_{21 }*t^{2} + b_{21 }*t + c_{21 }$$;

14. $$y_{2 } = y_{2 }(t) = \frac{1}{2} * a_{22 }*t^{2} + b_{22 }*t + c_{22 }$$;

15. $$z_{2 } = z_{2 }(t) = \frac{1}{2} * a_{23 }*t^{2} + b_{23 }*t + c_{23 }$$;

16. $$x_{3 } = x_{3 }(t) = \frac{1}{2} * a_{31 }*t^{2} + b_{31 }*t + c_{31 }$$;

17. $$y_{3 } = y_{3 }(t) = \frac{1}{2} * a_{32 }*t^{2} + b_{32 }*t + c_{32 }$$;

18. $$z_{3 } = z_{3 }(t) = \frac{1}{2} * a_{33 }*t^{2} + b_{33 }*t + c_{33 }$$

where $$a_{ij }$$ is the acceleration variable; $$b_{ij }$$ is the speed variable; $$c_{ij }$$ is the initial position variable (coordinate).

Therefore, there are 27 (1a - 9a plus 1-18) system equations with 36 unknowns (independent variables) which helps to explain the rich diversity of possible orbits for the three-body problem... Of course, if we select the energy associated with each spatial component, then we have 27 system equations with 27 unknowns (independent variables). Yes! The time variable, t, is also independent. However, we do not count it as unknown...

And if the position functions, 10 - 18, are generally correct, then we have solved the three-body problem generally.

David Cole,

https://www.researchgate.net/profile/David_Cole29.

Go Blue!

P.S. We apologize for any errors posted here.
Guest

PreviousNext