Uncertainty Principle (UCP) For Prime Numbers

Uncertainty Principle (UCP) For Prime Numbers

Postby primework123 » Sun Nov 01, 2015 12:57 pm

Let's Formulate an Uncertainty Principle (UCP) For Calculating the Exact Distribution of Odd Prime Numbers
(Hey, Quantum Physics has one!) until we can do better...

Keywords: Pi()--Odd Prime Counting Function, Li()--Logrithmatic Integral, ln()--natural log function, and pn and pn+1 are nth prime and (n+1)th prime, respectively, and we count 1 as prime only in the additive sense of number theory.

Here are some important facts we might considered provided Riemann Hypothesis (RH) is true (RH is true!):

*FACT I: |Pi(x) - Li(x)| < ( sqrt(x) * ln(x) ) / (8*[tex]\pi[/tex]) for all x ≥ 2657.

(*See Reference: Schoenfeld, Lowell (1976), "Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II",
Mathematics of Computation 30 (134): 337–360, doi:10.2307/2005976, JSTOR 2005976, MR 0457374.)

FACT II: (?) or could it be the Average Prime Gap Error (APGE) associated with the true average gap for all pn and pn+1 in the interval,
[1, x]?

FACT III: What could it be?

Uncertainty Principle (UCP) for the distribution of odd prime numbers:
UCP is |Pi(x) - Li(x)| * APGE ≥ ? for all x ≥ 2657.

Right? or Not even wrong!... !? :-)

A Solution:

Uncertainty Principle (UCP) is |Pi(x) - Li(x)| * |a'(x) - a(x)|.

Calculation:

We let a'(x) = x/Pi(x) where a'(x) is the true average prime gap for all pn and pn+1 in [1, x].
And we let a(x) = x/Li(x) where a(x) is the approximate average prime gap for all pn and pn+1 in [1, x].
|Pi(x) - Li(x)| * |a'(x) - a(x) | < ? where
|Pi(x) - Li(x)| < sqrt(x) * ln(x)/(8*[tex]\pi[/tex]) for all x ≥ 2657, and APGE is |a'(x) - a(x)|, and [tex]\pi[/tex] = 3.14...

|Pi(x) - Li(x)| < sqrt(x) * ln(x)/(8*[tex]\pi[/tex]) implies Pi(x) = Li(x) + r * sqrt(x) * ln(x) / (8 *pi) where -1 < r < 1.

This last equation implies Pi(x) = (8 * [tex]\pi[/tex] * Li(x) + r * sqrt(x) * ln(x) )/(8 *[tex]\pi[/tex]).

Therefore, a'(x) = x / Pi(x) = 8 * pi * x / (8 * [tex]\pi[/tex] * Li(x) + r * sqrt(x) * ln(x) ).

So, |a'(x) - a(x)| = |8 * [tex]\pi[/tex] * x / (8 * [tex]\pi[/tex] * Li(x) + r * sqrt(x) * ln(x)) - x / Li(x) |
= x / Li(x) * | (8 * [tex]\pi[/tex] * Li(x) - 8 * [tex]\pi[/tex] * Li(x) - r * sqrt(x) * ln(x))/ (8 *[tex]\pi[/tex] * Li(x) + r * sqrt(x) * ln(x)) |
= x / Li(x) * | ( - r * sqrt(x) * ln(x))/ (8 * [tex]\pi[/tex] * Li(x) + r * sqrt(x) * ln(x)) |
< x / Li(x) * | ( sqrt(x) * ln(x))/ (8 * [tex]\pi[/tex] * Li(x) - sqrt(x) * ln(x)) |
= x / Li(x) * ( sqrt(x) * ln(x))/ (8 * [tex]\pi[/tex] * Li(x) - sqrt(x) * ln(x)) if r = -1.

Therefore, APGE is |a'(x) - a(x)| < x / Li(x) * | ( sqrt(x) * ln(x))/ (8 * [tex]\pi[/tex] * Li(x) - sqrt(x) * ln(x)) |.

Hence,
|Pi(x) - Li(x)| * |a'(x) - a(x) | < (sqrt(x) * ln(x)) /(8*[tex]\pi[/tex])) * x / Li(x) * ( sqrt(x) * ln(x))/ (8 *[tex]\pi[/tex] * Li(x) - sqrt(x) * ln(x))
= 1/(8 * [tex]\pi[/tex]) * 1/Li(x) * (x * ln(x))^2 / (8 * [tex]\pi[/tex] * Li(x) - sqrt(x) * ln(x)).

Thus, we have the following calculation of UCP**:

UCP is |Pi(x) - Li(x)| * |a'(x) - a(x) | < (x * ln(x) )^2 /[8 * [tex]\pi[/tex] * Li(x) * ( 8 * [tex]\pi[/tex] * Li(x) - sqrt(x) * ln(x) ) ].

**Note: The Riemann Prime-Counting Function R(x) will improve UCP substantially because R(x) = Pi(x) since it incorporates all the
non-trivial zeta zeros of the Riemann zeta function in its calculation.

David Cole
(aka primework123)
Please support my research work at: https://www.gofundme.com/david_cole
Thank you! Thank Lord GOD! :)
http://biblia.com/verseoftheday/image/Ro8.28
primework123
 
Posts: 22
Joined: Sat Oct 31, 2015 2:07 pm
Reputation: 0

Return to Number Theory



Who is online

Users browsing this forum: No registered users and 9 guests